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Kurzfassung

Der Forschungsbereich um Kausalität gewann in der Informatik in den letzten Jah-
ren zunehmend an Bedeutung. Eine Definition die Kausalität formal erfasst würde es
Computern ermöglichen, ”Warum”-Fragen zu beantworten und hätte vielversprechende
Anwendungen im Bereich der Verifikation, des maschinellem Lernen, der Erklärbarkeit,
dem formalen rechtlichem Schließen und der algorithmischer Gerechtigkeit führen. Um
das Erreichen zu können müssen kausale Beziehungen aus Daten abgeleitet werden. Diese
werden anschließend verwendet um die tatsächlichen Ursachen für Ereignisse in konkreten
Situationen zu identifizieren. Das Ermitteln solcher Ursachen wird als token-kausale Infe-
renz bezeichnet. Nach jetzigem Kenntnisstand existiert kein ausreichend umfangreiches
Werk, welches den aktuellen Stand der Technik im Bereich token-kausaler Inferenzsyste-
me offenlegt. Diese Dissertation soll das eben genannte Defizit begleichen. Die hierfür
durchgeführte Literaturrecherche ist in drei verschiedene Granularitätsebenen unterteilt.
Die erste Ebene betrachtet die Literatur als eigenständiges Studienobjekt. Im Kontext
dessen werden Techniken der Netzwerkanalyse verwendet, um wichtige Publikationen,
Autoren und Forschungsgemeinschaften zu identifizieren. Die zweite Ebene ist eine klas-
sische Literaturrecherche, bei der eine Teilmenge der gesammelten Literatur im Detail
untersucht wird. Das Ziel hierbei ist es die wichtigsten Werkzeuge zur Formalisierung
von Kausalität zu extrahieren, zu beschreiben und zu kategorisieren. Dieser Teilmenge
gehören unter anderem die formalen Sprachen zur Codierung kausaler Beziehungen
an, aber auch die verschiedenen Kausalitätsdefinitionen sowie diverse Szenarien welche
verwendet werden um diese Definitionen zu testen. Die dritte Ebene beschäftigt sich
mit vier solcher Kausalitätsdefinitionen im Detail. Diese werden formal eingeführt und
anhand der vorgestellten Testszenarien verglichen. Dieser letzte Teil erforderte einige
Originalarbeiten, da nicht alle Szenarien in der Literatur formalisiert zu finden sind.
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Abstract

The study of causality has recently gained traction in computer science. Formally
capturing causal reasoning would allow computers to answer “Why”-questions and would
result in significant advances in fields such as verification, machine learning, explainability,
legal reasoning and algorithmic fairness. To accomplish this, one needs to be able to
infer type causal relationships, i.e. general statements about causal dependencies, from
data and then use those relationships to identify the actual causes of an event in a given
situation; such causes are referred to as token causes. To the best of our knowledge, there
does not exist a comprehensive survey, reviewing the state of the art of formal systems for
token causality. The present thesis addresses this deficit. The literature review that we
have performed operates on three different levels of granularity. The first considered the
literature landscape itself as an object of study, employing network analysis techniques
to identify important publications, authors and research communities. The second is a
classical literature review, where a subset of the collected literature is investigated in
detail, to extract, describe and categorise the tools used for formalising causation. This
includes the languages for encoding causal relationships, the various definitions that try
to capture token causality, as well as the benchmark used to test the capabilities of those
definitions. In the third part we describe and compare the four main token causality
definitions, w.r.t. the most prominent benchmarks in the literature. This last part also
required some original work, as not all the examples are found in the literature.
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CHAPTER 1
Introduction

Causal inference is a seemingly integral part of human reasoning [Rei13, p. 733–752]
it enables us to answer “Why?” questions, i.e. it provides humans with the ability to
formulate explanations. [PM18]. Naturally, a topic of such magnitude has captivated
philosophers for millennia, including notable figures such as Aristotle, Hume, and Kant,
as well as some members of the Vienna Circle [BHM09, p. 21,73,92,108].

In recent years the study of causality has departed from being a solely philosophical
exercise and gained traction across a multitude of fields. One of which is computer
science, which now harbours various communities each trying to approach causality from
different formal perspectives.

The causality literature that intersects with computer science can roughly be separated
into two sub-fields. The first is concerned with deriving type causal statements, i.e.
general statements about causal relationships. The second presupposes a set of type
causal relations and tries to identify the actual causes of an event in a given situation.
This type of causation is known as token causality or actual causality. The former
naturally intersects with the domain of machine learning, where the objective is to learn
patter from data. Token causality is instead closely related to those areas of computer
science concerned with formal reasoning and the goal of this sub-field is to axiomatise
the intuitive form of causal reasoning used by humans. This is an important task as a
sufficiently robust formalisation of token causality could allow a computer to explain
themselves. While this would impact many areas of computer science, including machine
learning, verification, and data bases, recent political developments1 emphasise the need
for such a project.

Although the roots are old, it was Judea Pearl who recognised the need for causal reasoning
in computer science. With the development of his causal calculus, he popularised the

1see “The Right to Explanation” [SP18]
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1. Introduction

study of causality in the context of computer science, so much so that applications of
causal reasoning can be found across many of the major areas in computer science. For
example, the study of causality intersects with the logic literature, e.g. [MT+97, Boc03],
it appears in the context of logic programming e.g. [GLL+04, LY10] and even has found
application in the area of program verification and databases [Kup16, Hal16a, p. 205-
211]. Moreover, being heavily influenced by Pearl, causality can be found in classical
machine learning literature such as probabilistic graphical models, e.g. [Pea09, Sch19].
Furthermore, recent voices in the neural network community frequently appeal to the
necessity of combining causal reasoning and neural networks [BDR+19]. Lastly, mentions
of causality permeate well into the outskirts of computer science, including areas such as
formal legal reasoning [LSW19b] as well as algorithmic fairness [KLRS17].
The examples of causal reasoning mentioned above refer to causation in general, which
to no surprise is dominated by the ideas of Judea Pearl. The literature discussing token
causality is dominated instead by the ideas of Joseph Halpern, who has introduced several
definitions of token causality [Hal16a], all of which use counterfactuals as their core
mechanic. Other common approaches for defining token causality are default reasoning
[Boc18a], processes [BS18] and probability theory [Ven11]. A hallmark of this literature
is that it is plagued by disagreement on every level, i.e. the general approach, the
philosophical tradition, how to formalise benchmarks, how to interpret benchmarks, and
so on. Therefore, it is hard to find a single consensus, that can be used to measure how
close we are to formally capturing the elusive concept of token causality. Even more
troublesome, it is not even clear whether such a formalism can exists.
Given this state of affairs, it comes to no surprise that as of now the dust has not yet
settled on a single formalism that “correctly” captures token causality. Therefore, the
literature being littered with competing definitions, it is rather difficult to assess the
current state of the art. This also happens because most of the publications in this
area discuss no more than two definitions at a time. To rectify this issue, this thesis
is a systematic literature survey collecting and contrasting all the various attempts of
formalising the elusive concept of token causality. To the best of our knowledge, this is
the first comprehensive survey of token causal reasoning definitions. The only publication
similar to this thesis is [Wes15], which contrasts several formalisms at once, most of
which were introduced more than a decade ago.
Given the vast body of literature surrounding causation, this survey operates on three
different levels of granularity.
The first level, discussed in Chapter 2, is a structural literature survey. It analyses the
literature based on features such as citation and co-authorship relations. The objective
of this part is to answer questions such as, what are the important publications; which
authors wield the most influence; which authors work on similar subjects. Meaning that
it intentionally avoids investigations into the subject matters discussed in the literature,
and approaches the literature landscape as its own object of study. This is accomplished
by casting the relationships between publications into a series of new graphs. To be more
precise, this part of the survey utilises a snowball search strategy for collecting the required
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publications. That is, the start set will consist of all publications from the “Journal
Knowledge-Bases Systems”, the “Journal Artificial Intelligence”, the “Journal Artificial
Intelligence and Law” and “International Joint Conferences on Artificial Intelligence
Organization” that were published between 01.2017 and 3.2020, which amounts to 4223
unique publications. Those are reduced by keyword search to a manageable set of 37
publications. From there, several forward-snowball, backward-snowball, and filter steps
are performed, resulting in a total of 872 unique publications, which are superficially
reviewed for relevancy, resulting in 294 publications. After filtering by publication date,
the resulting set of 107 publications is placed into a citation (and co-authorship) graph
and analysed using some network theoretic measures, e.g. centrality measures, clustering,
and others. This analysis produces a set of 36 important publications, which is passed
down to the second level. This part of the survey is partially automated, utilising web
crawlers and PDF-parsers to fill the SQL-Light Database, which is subsequently analysed
using the iGraph package [CN+06].

The second level of this survey, discussed in Chapter 3, is a classical literature review of
the previously established set of important publications. The objective of this part is to
provide an overview of the available formal languages, the definitions, and the benchmarks
used for token causal reasoning. This includes an intuitive introduction of each language,
definition, and benchmark, as well as their categorisation based on dimensions such as
time, popularity, and other characteristics. This part of the survey builds on the 36
important publications identified in Chapter 2, by extracting each formal language, token
causal definition, or mentioned benchmark. This process identified 18 unique languages,
32 unique definitions of token causality, and more than 20 benchmarks. Using the set of
important publications the first step is to assess the popularity of each construct. Each
of the collected constructs are then categorised and surveyed independently. Apart from
a short discussion, this includes a categorisation of languages and definitions. Languages
are categorised based on properties such as quantification, many-valued variables, default
reasoning, temporal reasoning, or probabilistic reasoning. Definitions will be categorised
based on their language, and whether they follow a counterfactual, process orientated,
probabilistic, or regularity theoretic approach.

The third level, discussed in Chapter 4, is an in-depth introduction of selected few
definitions and languages. This includes, a definition provided by Halpern, which is
formulated using causal models [Hal15a]; a definition introduced in [BV18] which utilises
a slightly modified version of causal models; a definition provided by [DBV19] which
uses a version of CP-Logic; a definition developed in [Boc18a] which builds on the
Non-Monotonic Theory presented in [MT+97]. The objective of this part is to provide
insights into the various kinds of machinery used for token causal inference. This includes
a formal introduction of the languages and definitions, as well as a comparison of the
approaches based on common benchmarks.

We start by providing a rudimentary discussion on the differences between token and
type causality and briefly presents an overview of the main philosophical traditions
used to define causality. The most fundamental distinction made in the causality

3
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1. Introduction

literature is the distinction between type and token causality, which is often referred
to as actual causality [Hal16a]. However, there are many more approaches to how one
can conceptualise causality. For example, according to [BHM09] there are standard
and alternative approaches to causation. The standard approaches to causation include
regularity theories, counterfactual theories, probabilistic theories, causal process theories
and agency interventionist theories, while the latter includes theories about causal power
and capacities, an anti-reductionist approach, the field of causal modelling, an approach
requiring the existence of causal mechanism and one that embraces pluralism. To provide
a basic understanding of causality, this section elaborates on the notion of type and token
causality, as well as the standard approaches to causation.

The classification of causality into type and token causality is rooted in the metaphysical
distinction between types and tokens, which is used to differentiate a general sort of thing
and its particular occurrence [Wet18]. [Hau05] use the statement “Rose is a rose is a rose
is a rose.” to highlight the differences between types and tokens. That is, depending on
what one may understand as word, this sentence contains three or ten different words. In
the prior, the word-types of the sentence are counted, while in the latter the word-tokens
are counted.

Similarly, one can distinguish two (possibly distinct) notions of causality. Type causality
is concerned with forward-looking statements such as “smoking causes lung cancer”,
granting their wielder some predictive capabilities. Hence, establishing type causality is
often the pursuit of scientific enquiry. However, this suggests that type-causal relations
do not establish a strong causal connection, but rather a causal tendency. Meaning, while
smoking may cause lung cancer, it is not necessary the case that a smoker will develop
lung cancer, thus the statement “smoking tends cause lung cancer” may be more precise.
By contrast, if one wants to establish that the act of smoking caused lung cancer in
a particular person, one speaks of token causality. The objective hereby is to identify
the events that explains why a certain outcome arose. Hence, token causality tends to
be backwards-looking. Unfortunately, there remains debate about whether those two
notion of causation are distinct. For example, one view to take is that type causation is
merely a generalisation of token causal relations, which are assumed to be fundamental.
Another view would be to assume that token causation is merely an instantiation of
type-level laws, which under this perspective are considered as the fundamental element.
Yet another view considers both type and token causality to be distinct expressions
of a singular unknown causal relation. For example, Halpern’s token causal inference
mechanism requires a model of the world which is given as a set of equations that encode
type causal relations [Hau05, Hal16a].

The debate of what constitutes token or type causality can be extended to variables.
That is, are causal relationships established between variables or the values of those
variables. In the former case, the relations would be considered type-level relations and
in the latter case, the relations would be considered token-level relations [Hau05]. For
example, consider a simplistic model of causality. That is, we are given two variables X
and Y , lets say X is a type-level cause of Y if there exists a possible intervention on the

4



variable X such that the value of the variable Y changes. By contrast, the value x of X
is a token cause for the value y of Y , if the value x is essential for the fact that variable
Y has value y [Wes15].

While the distinction of type and token causality addresses the phenomena of causality
directly, the five standard approaches found in [BHM09], i.e. regularity theories, counter-
factual theories, probabilistic theories, causal process theories and agency interventionist
theories, can be used to classify definitions of token causality based on their philosophical
foundations.

Both regularity and counterfactual theories of causation seem to be the most commonly
discussed in the computer science literature. The regularity theoretic view on causation
defines causality by utilising regularities and is therefore strongly connected to the
notion of type causality, e.g. an event A is a cause of event B, if A usually precedes B.
Unfortunately, the simplistic view sketched here is clearly insufficient, e.g. as otherwise
the night would be caused by the day. However, there are more refined versions of this
principle that closer approximate causation, e.g. [Bau13] and [Boc18a]. By contrast,
the counterfactual theoretic view on causation relies on hypothetical statements, e.g.
an event A is a cause of event B, if event A had not occurred then event B would not
have occurred. Again this simplistic view of counterfactuals has proven to be insufficient
as well, because there are scenarios where there is no direct counterfactual dependence
between cause and effect, e.g. two people pushing the same button at the same time.
Nevertheless, many modern definitions of causality adhere to this framework, the most
prominent of which are the definitions produced by Halpern, see [HP05] and [Hal15a].
Given their differences, it is quite interesting that both can trace their origin to Hume
[Hum48, Hal16a, p. 2].

We may define a cause to be an object followed by another, and where all
the objects, similar to the first, are followed by objects similar to the second.
Or in other words, where, if the first object had not been, the second never
had existed.

The other approaches seem to be less prominent. Probabilistic theories adhere to the
view that, if event A is the cause of event B, then the occurrence of event A increases
the probability of event B occurring. Due to the probabilistic nature of the relationship
between cause and effect, Bayes nets could be considered as one of the formalisms rooted
in this theory. A major issue with this approach is that there may be probabilistic
relationships between variables, which are not necessarily causal ones, and teasing them
apart provides a major challenge for this tradition. Causal process theories, distinguish
themselves, by trying to characterise causation using continuous processes and the
relationships between them, rather than trying to find a suitable relation between discrete
events. Lastly, agency interventionist theories, seem to be related to counterfactual
theories of causation, but differentiate themselves by requiring that the hypotheticals
generated using interventions are tied to human agency [BHM09].

5



1. Introduction

To summarise, the structure of the thesis is a follows. Chapter 2 investigates the
structure of the causality literature landscape using citation graphs to identify important
publications and influential authors. Chapter 3 surveys a subset of important publications
to summarise and categorise the various approaches taken to define token causality.
Chapter 4 highlights selected formalisms by demonstrating their mechanism and by
comparing them using common benchmarks. This includes definitions such as the one
developed in [BV18] which relies on causal models; the one introduced in [DBV19]
which uses CP-Logic; the one discussed in [Boc18a] which builds on Non-Monotonic
Theory; the newest one put forward by Halpern, which was introduced in [Hal15a].
Moreover, we use the benchmarks referred to in the literature under the names “Symmetric
Overdetermination”, “Switching”, “Late Preemption”, “Early Preemption”, “Double
Preemption”, “Bogus Preemption” and “Short-Circuiting”. Chapter 5 concludes this
thesis.

6



CHAPTER 2
Literature Collection and

Analysis

Intersecting with a wide range of subjects, e.g. philosophy, statistics, computer science,
law, natural science, social sciences and more, as well as stretching over centuries, e.g.
being already discussed by Hume in the 18th century, inquiries into causality are have
produced an incredible the wealth of literature. Hence, to remain within a reasonable
scope, it is of utmost importance to rely on a properly defined methodology and a suitable
set heuristics, to navigate this vast ocean of literature. Therefore, the primary objective
of this chapter is to outline the methodology employed in the collection of the literature
used for the survey found in Chapter 3, where we will identify important formal languages
used for encoding causal relationships, important token causal definitions, as well as
important benchmarks developed for testing said definitions. Hence, Section 2.1 limits
itself to a detailed characterisation of the publication collection process, as well as the
introduction and justification of the methods used to identify relevant literature and
influential authors among the collected publications.

It’s secondary objective, mostly the subject of Section 2.2, is to answer questions such
as, what are the important publications; which authors wield the most influence; which
authors work on similar subjects. Meaning that it intentionally avoids investigations
into the subject matters discussed in literature. This is accomplished by extracting
information from the citation and co-authorship relations in the collected literature and
using it to generate a series of pointers to potentially relevant publications, authors and
research communities. Thereby, drawing a map of the causation literature landscape
that highlights promising points of entry, which hopefully supports the reader in their
voyage through the causation literature. By doing so this thesis is essentially treating
the literature landscape surrounding causations as an object of study in itself.

7



2. Literature Collection and Analysis

2.1 Methodology
This section provides a detailed description of the methodology used to identify, collect
and analyse the computer science, logic and philosophy literature surrounding causality.
Firstly, data collection. The data, i.e. publications, are collected using a snowball search
strategy, which is a search approach for systematic literature studies and refers to the
use of reference list of a publications or the citations to those publications to identify
additional publications [Woh14]. An important part of such an approach is a detailed
characterisation of the set of publications from which snowball steps are conducted,
as well as an adequate description of how and when those steps are employed. This
information is provided in Subsection 2.1.1. Moreover, this subsection provides a detailed
description of the publicly available database1 used to store the meta information of the
collected publications, the purpose of which is to provide other researches access to the
constructed snapshot of the literature and to enhance transparency. Lastly, the methods
used for the analysis of the collected data are discussed in Subsection 2.1.2.

2.1.1 Data Collection
The methodology underlying this systematic literature review employs a snowball search
strategy. In general, according to [Woh14] any snowball search strategy should start by
characterising an appropriate initial set of publications, i.e. the start set, which is then
iteratively expanded by either forward or backward-snowballing until a desirable final set
of publications is obtained. The start set should satisfy the following criteria:

• The start set should cover a diversity of communities.

• The number of papers in the start set should not be too small.

• The number of papers in the start set should not be too big.

• The start set should cover several different publishers, years and authors.

• The start set ought to be formulated from keywords (and their synonyms) in the
research question.

Moreover, as stated in [Woh14] any snowball step on a given set of publications consists
of both forward and backward-snowballing. The latter, adds all relevant references from
all unprocessed publications to the set of publications. By contrast, the former leverages
modern technologies, such as Google Scholar to identify every relevant publication that
references any unprocessed publication in the provided set [Woh14].

Using this as a template, the actual methodology is constructed as follows. Firstly, the
objectives that ought to be satisfied by the snowball search strategy are made explicit.
In this particular case those objectives are to

1https://github.com/KonstantinRK/CausalitySurvey

8

https://scholar.google.at/
https://github.com/KonstantinRK/CausalitySurvey


2.1. Methodology

• focus on token causality publications;

• focus primarily on publications related to computer science, and artificial intelligence
in particular;

• focus secondarily on publications related to philosophy or law;

• focus on publication that approach causality with sufficient formality;

• focus on logic and rule based approaches to causality;

• focus on the recent literature, i.e. publications between 2010 and (early) 2020.

Being a snowball search, the growth rate of the publications to consider is exponential.
Hence, to serve the outlined objectives it is vital to construct a starting set that provides
a sufficient strong directive. Since the primary focus is to remain within the greater
context of computer science, logic and (symbolic) artificial intelligence, the start set
construction is initiated by considering all articles from

• Journal Knowledge-Bases Systems (KBS)

• Journal Artificial Intelligence (AI)

• Journal Artificial Intelligence and Law (AI&Law)

• International Joint Conferences on Artificial Intelligence Organization (IJCAI)

that were published between 01.2017 and 3.2020. Focusing on such recent publications
should serve the recency bias established in the methodology’s objectives. The collected
publications are subsequently preprocessed using a simple keyword search. That is the
first necessary condition for a publication to be in the start set is

• that its title contains a string starting with the character sequence “caus” or

• its abstract contains a string starting with the character sequence “causal”.

Let S0 be the subset of all collected publications, that satisfy these criteria. To focus
on logic and rule-based approaches, all publications that are deemed irrelevant under
closer inspection or are inaccessible will be removed. The classification as relevant is done
based on a list of soft criteria. By satisfying positive criteria the publication increases
its chance of being deemed relevant, satisfying negative ones decreases its chance, and
criteria marked by “∗” are necessary.

∗ Does the publication discuss causality or any related concepts?

+ Does the publication engage with the philosophical aspects of causality?
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+ Does the publication try to formalise causality using logic (or another formal
language)?

+ Does the publication’s title explicitly mention logic and/or causality?

+ Does the publication discuss token causality?

− Does the publication discuss causality in the context of machine learning?

− Does the publication discuss causality in a highly informal manner?

− Is the publication a book?

To explain the snowballing step, some general notation must be introduced. Let X be
some set of publications. Then X c is the set of publications deemed relevant by the
previously stated criteria. Furthermore, let X r be the set of publication deemed relevant
by the previously stated criteria, which are published after (and including) 2010.

Utilising this notation, let Sr
0 be the start set of this snowball search. From there, a

variation of backward-snowballing and forward-snowballing2 steps are applied to construct
the set S. That is,

• The set S−1 is obtained by backwards-snowballing on the set Sr
0 ;

• The set S−2 is obtained by backwards-snowballing on the set Sr−1 ;

• The set S+1 is obtained by forward-snowballing on the set Sr
0 ;

• The set S+1−1 is obtained by backwards-snowballing on the set Sr+1 ;

• The set S+2 is obtained by forward-snowballing on the set Sr+1 ;

• The set S+2−1 is obtained by backwards-snowballing on the set Sr+2 ;

and finally the set S is obtained by taking the union of all the previously mentioned sets,
i.e. S ∶= S0 ∪ S−1 ∪ S−2 ∪ S+1 ∪ S+1−1 ∪ S+2 ∪ S+2−1 .

Unfortunately, the outlined literature collection process exhibits a rather undesirable
property. That is, in an ideal world the methodology would provide a perfectly repro-
ducible algorithm that reliably and deterministically produces the same set of publications
on each execution. Unfortunately, this property cannot be satisfied by the constructed
methodology, as any employment of forward-snowballing introduces variability into the
system. Considering the importance of forward-snowballing to identify the most recent
literature, foregoing the application of this tool in the construction of S would not have
been feasible. Therefore, conditions that further infringe upon reproducibility, i.e. the soft
categorisation of relevance and the removal of inaccessible publications, seems justifiable.

2using Google Scholar between 16.04.2020 and 20.04.2020.
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The dataset constructed using this methodology is publicly available.3 It is stored in
a SQLite-database and was constructed using SQLAlchemy. This database can store
publications, authors, venues and tags. Its structure is depicted in Figure 2.1 as an
ER-diagram using the notation in [Che76].

paper

tagvenue author

has

published in published by

cites

name

key

json name

key

json

surname

name

key

json

comment

key

name year

doi month

relevant access

comment bibtex

pdf_path json

n

m

n

m

n

1

n

m

Figure 2.1: ER-Diagram of the database.

The table “Venue” stores platforms that publish research, e.g. journals such as AI or
conferences such as IJCAI. This table is rather sparse, having only a column for the
names of the venues and a column reserved for a JSON-string in case additional data

3https://github.com/KonstantinRK/CausalitySurvey
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must be stored. Similar in structure is the “Tag” table. Its intended purpose is to store
tags that can be used to further categorise publications, e.g. they are used to identify
which publications were added to the database at which snowballing step. Slightly more
complex is the “Author” table, which contains an additional column for surnames, as well
as a column reserved for comments. The last column allows one to differentiate authors
with identical names. By far the most extensive one is the Table “Paper”. Firstly, it
provides columns for basic information such as the title, the DOI, the publication year
and month, as well as its BIBTEX-string. Moreover, it contains columns to track whether a
publication was accessible and whether it is deemed relevant. Furthermore, for easy access
there exists also a column storing the local path to the pdf-file of the publication. Lastly,
columns for comments and for storing additional data in JSON-format are provided as
well.

Those tables relate to each other as follows. Firstly, the table “Venue” is connected to the
table “Paper” via an 1:n-relation. Secondly, the “Author”- and the “Paper”-table are in
an m:n-relation. The same holds true for the “Tag”- and the “Paper”-table. Thirdly, to
store the citation relations between publications, the table “Paper” is in an m:n-relation
with itself.

During the data collection, publications will be assigned one of seven tags. Those are
0, -1, -2, +1, +1-1 +2 and +2-1 and indicate membership to the respective sets
constructed during the snowballing process.

2.1.2 Data Analysis Methods
The data analysis was conducted according to the following steps. The first is the
construction of several graphs using the stored citation relation and the co-authorship
relation. This is followed by a heuristic detection of research communities obtained
through the application of a community detection algorithm. Following this, a combination
of centrality measures and publication counts will be used to identify the most prominent
authors in this field. Lastly, a similar approach will be employed to identify its most
significant publications.

Considering the collected data it is possible to derive several graph structures. The first
two are graphs have vertices that represent publications and edges that correspond to
citations, i.e. each edge (A, B) implies that there exists a publication A that references
another publication B. Therefore, they are directed graphs4. The first graph Gp, called
the “publication graph”, is build using the publications in Sr as its vertices. Hence, it
contains only those publications that were deemed relevant and that have been published
from 2010 onwards. Gp is of particular importance because it serves as the bedrock of all
subsequent analysis. That is, Gp is used to construct a set of important publications from
which all formal languages, definitions and examples discussed in subsequent chapters
are extracted. The second graph Gf , called the “full graph”, uses S as its vertex set,

4These graphs contain cycles. This is due to the fact that sometimes not yet publicised works are
cited, which contain a reference back to the original publication.
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thus it contains all publications irrespective of their publication date and their relevance
marker. The purpose of this graph is to hedge against the limited perspective provided
by Gp. That is, the quick analysis of Gf allows the detection of additional pointers to
potentially relevant literature, thus providing additional insight into the literature before
2010, as well as opening up the possibility of identifying relevant publications that were
wrongly classified as irrelevant during the snowballing procedure. Unfortunately, by
construction only the publications in S that were published after (and including) 2010
contain a complete mapping of their citations, thus any results obtained from Gf are
inherently of inferior quality, as the incomplete citation relation obviously distorts the
relative relevance between the analysed publications. Hence, while sufficient for hedging,
this thesis refrains from indulging in any further analysis of Gf .

Three additional graphs are also produced. They encode information about the authors
and the relationships between them. Starting with the “author graph” Ga, which encodes
the citations between authors, rather than between publications. Every vertex in Ga

represents an author, who has at least one publication represented in Gp. Every edge
in Ga between an author A and an author B indicates that there exists at least one
publication of A that cites at least one publication of B (with respect to Gp), while its
weight represents the frequency of this occurrence. To account for multiple citations, as
well as self-referential behaviour, Ga must be a directed, weighted graph containing loops.
The purpose of this graph is to identify potentially influential figures, whose ideas shape
the discourse around the formal approaches to token causality.

The second, Gc or “collaboration graph”, encodes the collaborations between authors.
That is, while its vertex set is identical to Ga’s vertex set, an edge in Gc between an
author A and an author B, indicates that A and B co-authored a publication in Gp, thus
the weight of an edge represents how often they collaborated on publications in Gp. Gc,
is primarily used as an intermediary step in the analysis procedure. However, it will be
included in the analysis, as it provides an overview of the collaboration relations among
the authors, allowing for the detection of research communities in a strict sense. The
last, Gm or “merged graph” is simply a merger of Ga and Gc, where each undirected edge
is replaced by two opposing directed edges (in the case of duplicate edges, their weights
are summed up). This graph will be used to detect research communities within the
literature that produce a high relative volume of relevant publications. In the ideal case,
this should uncover thematic clusters, aiding the reader in the search for related literature.
To summarise, Gf and Gp are directed graphs; Ga and Gm are directed, weighted graphs
containing loops and Gc is an undirected, weighted graph.

The constructed graphs are subjected to two different kinds of information extraction
processes. The first uses the community detection algorithm to identify research com-
munities, while the second uses a variety of centrality measures to identify important
publications and authors. Approaches leveraging such techniques fall under the term
“citation analysis”. An area of research concerned with the discovery and management of
literature by analysing its references to evaluate scholarly contributions, track the flow of
knowledge, study the structure of the research field, etc. [ZS15, p. 1-5]. While useful, this
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requires the acceptance of several assumptions. Namely, citation of a document implies
use of that document by the citing author; citation of a document (author, journal, etc.)
reflects the merit (quality, significance, impact); citations are made to the best possible
works; a cited document is related in content to the citing document; all citations are
equal.
While accepting those rather strong assumptions is problematic, many of which were
already violated by this text, additional concerns with this technique arise when one
also considers that there can be various problems in the data, e.g. errors, self-citations
or multiple authors. However, due to the fact that those techniques are only used in a
rudimentary manner to provide a starting point for the subsequent research, a proper
justification of the applicability of those assumptions with respect to the given data will
be omitted. See [Smi81] for a detailed discussion about the validity of those assumptions.
Firstly, the detection of communities. For the purposes of this work, a group of researchers
is classified as a community (with respect to their work on causation), if the group is of
size greater than two and if the group produced more than two relevant publications.
This approach should provide a rough estimate of the research clusters in the literature
based on the information encoded in the merged graph. The community detection itself is
accomplished using an algorithm published in [RB08], which is suitable for any directed,
weighted graphs. Hence, if one excludes self-referential behaviour, the same algorithm
can be used on any graph up for analysis, thus it is well suited for Gm. Furthermore,
[RB08] introduces their algorithm by studying a citation graph, thus demonstrating
the suitability of the algorithm for such tasks. See [RB08] for further discussion and
additional details. Nevertheless, to identify relevant communities the following procedure
will be used. Firstly, Gm will be cleared from all loops. Secondly, all authors that are
only cited or that only cite, with respect to the collected data, are removed. Thirdly,
the community detection algorithm is applied to the graph. Lastly, all communities
are ranked based on the average number of relevant publications per author. Hence,
providing the possibility for smaller communities to get some spotlight as well.
Secondly, the primary technique used in this work to assess the importance of a vertex
in a graph relies on the use of centrality measures. Being significant for the work in
subsequent chapters, the discussion of such measures warrens a more detailed discussion
as compared to community detection part. In general, those centrality measures are used
to rank vertices based on some notion of importance. In particular, they can be used
to understand diffusion processes, assess an individuals risk of infection or explain the
influence of a person in a social network [BJT19]. According to [dPMGAO11] degree,
closeness and betweenness centralities are the most popular ones. Additionally, there
exists a family of centralities that is closely tied to the field of spectral graph theory
(see [Spi12]), as those centralities use eigenvalues and eigenvectors in their computation.
This includes measures such as the eigenvector centrality, alpha centrality, page rank and
Katz-Bonacich centrality (see [BJT19]).
The following provides a brief intuition about some of the mentioned centrality measures
and is compiled from information found in [SR15, dPMGAO11, BJT19, BL01, PBMW99].
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The degree centrality is a local measure of importance based on the degree of a vertex. In
the case of a weighted graph, the weighted degree of a vertex is taken for this measurement,
thus implying that the weight of an edge must reflect some notion of similarity. That
is, a higher weight implies a stronger connection, e.g. number of interactions. If one is
confronted with a directed graph, the degree centrality dissolves into an in- and out-
degree centrality. Although it can be used to assess the “popularity” of a vertex, due
to its locality it neglects the remaining structure of the graph. The closeness centrality
is computed using the sum of all shortest path lengths. Hence, it is a measure for
assessing the importance of a vertex based on how quickly such a vertex can reach every
other vertex. Moreover, this implies that edge weights must represent dissimilarity, e.g.
distance between vertices. Unfortunately, this measure requires the graph to be strongly
connected. Hence, it is not suitable for directed graphs in general. The betweenness
centrality gives higher values to vertices that are part of many shortest paths between
pairs of vertices. Meaning it attempts to assess the importance of a vertex based on how
vital a vertex is for the flow of information between the other vertices in the graph. As
this centrality builds upon the notion of the shortest path, it requires the weights of a
graph to represent a dissimilarity between vertices. However, a benefit of this centrality
is that it is suitable for both directed and undirected graphs. The eigenvector centrality
is similar to the degree centrality, as it assesses the importance of a vertex based on the
number of neighbours, thus it requires weights to denote similarities. However, it differs
in the evaluation of those neighbours, determining the importance of a vertex based on
the importance of the vertices in its neighbourhood. That is, the eigenvector centrality
is computed by assuming that the centrality of a vertex is proportional to the sum of
eigenvector centralities of the vertex’s neighbours. Hence, it is a self-referential process.
Unfortunately, common implementations require graphs to be undirected and connected.
The alpha centrality is a generalisation of the Eigenvector centrality for directed graphs.
The idea behind this centrality is that it assumes that a vertex has some exogenously
defined start value. The Katz-Bonacich centrality generalises the Eigenvector centrality
by reducing the importance of distant vertices. Page Rank relativises the centrality score
passed on by a vertex, based on the number if neighbours. Hence, a vertex having a
directed edge to an important vertex must not necessarily have high importance itself,
e.g. a webpage linking to an important webpage must not necessarily be important itself.
Furthermore, to ensure sensible results in directed graphs, dead ends are avoided by
jumping to a random vertex instead.

Each of those measures allow for a separate ranking of publications and authors. However,
a blind application of those methods would neglect the structure of the graphs and thus
could lead to erroneous results. Hence, some additional care must be given and some
slight adjustments to the graphs are required. In the case of Gp, one is faced with a
directed (and not strongly connected) graph. Therefore, the closeness or eigenvector
centrality are ill-suited for application on this graph. Furthermore, the degree centrality
is obviously applicable. However, it decomposes into two separate measures. Additionally,
the regular degree centrality will be used as well. That is, in the context of this particular
dataset, the regular degree distribution actually provides a rough compromise between
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the recency bias of the out-degree, as well as the conservative tendencies associated with
the in-degree measure (this can be observed in Figure 6.1). Hence, the undirected degree
measure will be used as well. Unfortunately, due to their locality degree centralities
provide a rather limiting picture, thus in an attempt to compensate for this shortcoming
an alternative to the eigenvector centrality, namely page rank, is used. Although it is
somewhat unusual to use this algorithm for citation graphs, this approach is not unheard
of, see [DYFC09, MGZ08, CXMR07, MR08, NJFD14] for an in-depth discussions. One
particular benefit of determining the importance of a publication in such a manner is
that under Page Rank simply referencing an important publication, does not indicate
a publications own importance. The last remaining common centrality measure, the
Betweenness centrality, can and thus will be applied. Providing yet another dimension
for selecting publications.

In the case of the author graph Ga, one is faced with a directed, weighted graph containing
loops. Hence, modifications to the graph are required. Firstly, while included for the sake
of completion in the graph Ga, it seems sensible to discount self-referential behaviour for
the ranking. Secondly, all centrality measures used in the ranking of publications can
accommodate weights in their assessment. However, the Betweenness Centrality requires
the weight of an edge to express dissimilarity, thus it is necessary to convert the weights
such that they express dissimilarity rather than similarity between vertices (see [Run12,
p. 13]). Moreover, in addition to the centralities it is reasonable to include the number of
publications (in the examined field) as an additional measure.

2.2 Analysis
This section presents the results obtained by instantiating the methodology outlined
in Section 2.1. This includes a documentation of the publication collection process, a
rudimentary presentation of the constructed graphs, as well as their analysis utilising the
described methods to generate pointers to possibly relevant publications, authors and
communities. Moreover, the most important aspect of this section is the construction of
a set of seemingly important publications, whose content are surveyed and discussed in
subsequent chapters. Hence, Section 2.2.1 contains the documentation of the publication
collection process, presents the constructed graphs and describes the collected literature
through the performance of a rudimentary quantitative analysis. Furthermore, Section
2.2.2 executes the analysis of the constructed graphs.

2.2.1 Data Preparation and Basic Analysis
Here the data collection process is quantitatively described. Additionally, any detected
mistakes as well as deviations from the constructed methodology are highlighted as well.
Moreover, this is followed by a brief and offensively basic investigation into the collected
data and the constructed graphs.

Using the outlined methodology the following literature database was constructed. By
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collecting all publications from the venues Journal Artificial Intelligence (AI), Journal
Artificial Intelligence and Law (AI&Law), International Joint Conferences on Artificial
Intelligence Organization (IJCAI) and Knowledge-Bases Systems (KBS) that were pub-
lished between 01.2017 and 3.2020 one obtains a set containing 4223 publications. To
be precise, AI contributed 267 publications, by contrast, AI&Law provided only 60.
Furthermore, from KBS a total of 1281 publications could be obtained, while the majority
of publications, i.e. 2615, was sourced from IJCAI. After applying the keyword based
filter one obtains S0 , which contains 37 publications only.5

After closer investigation, the publications deemed relevant according to the specified
criteria are

• Proof with and without probabilities [Ver17];

• Characterizing causal action theories and their implementations in answer set
programming6; [ZL17];

• Actual Causality in a Logical Setting [Boc18a];

• On the conditional logic of simulation models [II18];

• Counterfactual Resimulation for Causal Analysis of Rule-Based Models [LYF18];

• Scalable Probabilistic Causal Structure Discovery [SPG18];

• ASP-based discovery of semi-Markovian causal models under weaker assumptions
[ZZE+19];

• Arguing about causes in law: a semi-formal framework for causal arguments
[LSW19b].

Hence, Sc
0 contains only 8 publications. Executing the described snowballing steps on the

start set, one obtains a total of 872 publications. Out of which only 294 (around 34%)
are categorised as relevant. As depicted in Figure 2.2, this can be made more precise.
Meaning that S−1 obtained by performing backward-snowballing on Sr

0 , contains 204
publications out of which only 79 are relevant. The second backward-snowballing step,
provided a total of 486 publications with 165 being relevant. The set S+1 contains 30
publications collected by forward-snowballing on Sr

0 . Performing a backward-snowballing
step on Sr+1 generates S+1−1 which contains 63 publications from which 25 are deemed
relevant. The second forward-snowballing step, produces S+2 resulting in an additional

5Those publications are [vdZLT19, Ver17, Che19, NFLG19, LFWZ19, LWFZ18, ZLW+18, CF17,
LWZ17, ZL17, Mu18, KOP19, HSJ17, ZB17, ZHZ+17, LJE+17, SOM17, ZWW16, AR16, CGS+18,
Boc18a, II18, LYF18, CF18, ZWW18, BJO18, JZB18, SPG18, WLC18, XWY+19, ZZE+19, CQZ+19,
SG19, XM19, HBF+19, SSS+19, LSW19b]

6Since [ZL17] was not accessible “Characterizing causal action theories and their implementations in
answer set programming: Action languages b, c, and beyond" [ZL15] will be used for the snowballing
step. This departure from the methodology, is justified due to its initially high reprieved relevancy.
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7 publications with only 3 relevant ones among them. Lastly, by performing a final
backward-snowballing step on Sr+2 , 45 new publications are discovered increasing the
number of relevant publications by another 7.

Figure 2.2: Number of publications and relevant publications added during each snow-
balling step. (From left to right Sc

x/Sx: 8/37, 79/204, 165/486, 7/30, 25/63, 3/7, 7/45)

Although great effort was taken to make the data collection sufficiently accurate. Some
mistakes were discovered after the data collection was already completed. Particularly of
note is that there are two publications titled “Causes and explanations: a structural-model
approach: part i: causes” by the same authors, i.e. [HP01] and [HP05]. During the data
collection process, those two publication were unfortunately conflated.

From the meta-data of the publications alone, one can observe the contributions to this
field over the years. That is, given the publication dates of the literature collected in Sc

it is possible to construct Figure 2.3, which depicts the distribution of the number of
publications (in Sc) per year across the past 50 years. Furthermore, according to the
data collected, the decade between 2000 and 2010 was the most productive period, i.e. S
contains 73 publications before 2000, 114 between 2000 and 2010 and 107 publications
from 2010 onwards. Additionally, it can be observed that 2004, 2007 and 2009 were the
most productive years overall. Containing notable publications such as “Nonmonotonic
Causal Theories” [GLL+04], “Causes and Norms” [HK09], “Prevention, Preemption, and
the Principle of Sufficient Reason” [Hit07a], “Two Concepts of Causation” [Hal04] and
“Structural Equations and Causation” [Hal07] 7.

7discussing and using formalisms such as Neuron Diagrams, Structural Equations and some variant
of McCain and Turner’s Causal Logic
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Figure 2.3: Number of relevant publications per year (a negligible amount publications
occur before 1970)

Further information can be extracted by encoding the collected data as graphs. As
discussed earlier, the set of publications S and their references naturally induce a directed
graph containing 872 vertices and 2052 edges. This graph, i.e. Gf can be observed in
Figure 2.4. Induced by the set Sr, containing publications that are both relevant and are
published after (and including) 2010, one obtains Gp as a sub-graph of Gf . Gp contains
only 107 and 326 edges and can be observed in Figure 2.5. Using Gp one can then
compute Ga, visible in Figure 2.6, which contains a total of 130 vertices and 462 edges.
As discussed this graph encodes the citations between authors and not the one between
publications. Hence, it requires that its directed edges are weighted. To analyse the
co-authorship relation one can create Gc, which is depicted in Figure 2.7 and contains 130
vertices and 192 undirected, weighted edges. Lastly, Gm, depicted in Figure 2.8, is the
merger of Ga and Gc, thus it contains 130 vertices and 755 edges. For a quick overview of
some of their basic properties please consult Table 2.1 and Table 2.2, as well as Figure
2.9, Figure 2.10 and Figure 2.12 respectively.
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Vertices Edges Density Clustering CoefficientGp 107 326 0.0287 0.2791Ga 130 462 0.0275 0.3144Gc 130 192 0.0229 0.7843Ga 130 755 0.045 0.5141

Table 2.1: General properties of the discussed graphs. Other common measures such as
average path length, radius and diameter, as well as vertex- and edge connectivity are
omitted as all graphs in question are disconnected.

Minimum Maximum Average MedianGp

Degree 1 22 6.09346 5
In-Degree 0 18 3.04673 2

Out-Degree 0 13 3.04673 2Ga

Degree 0 50 7.10769 4
In-Degree 0 29 3.55385 3

Out-Degree 0 23 3.55385 0
Weighted Degree 0 85 10.2615 5

Weighted In-Degree 0 53 5.13077 3
Weighted Out-Degree 0 32 5.13077 0Gc

Degree 0 13 2.95385 2
Weighted Degree 0 17 3.67692 2.5Gm

Degree 0 53 11.6154 10
In-Degree 0 29 5.80769 5

Out-Degree 0 24 5.80769 4
Weighted Degree 0 97 17.6154 13

Weighted In-Degree 0 59 8.80769 5.5
Weighted Out-Degree 0 32 8.80769 5.5

Table 2.2: Degree Statistic of Gp, Ga and Gc.
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Figure 2.9: A line graph depicting the in-degree/out-degree/degree distribution of Gp

Figure 2.10: A line graph depicting the in-degree/out-degree/degree distribution of Ga
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Figure 2.11: A line graph depicting the in-degree/out-degree/degree distribution of Gc

Figure 2.12: A line graph depicting the in-degree/out-degree/degree distribution of Gm
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2.2.2 Communities, Authors and Publications

Here the results obtained by using the tools introduced in Section 2.1.2 to analyse the
data discussed in Section 2.2.1, which were collected according to the methodology
in Section 2.1.1 are presented. The discussion starts by presenting the results of the
community detection algorithm, is followed by providing a selection of authors deemed
important and concludes by building the set of important publications whose content
will be described and categorised in the subsequent chapters.

Applying [RB08]’s community detection algorithm to a subgraph of Gm, which was ob-
tained by removing all vertices with zero in- or zero out-degree, the following communities
could be identified. Recall that a grouping of researchers is classified as a community
only if the group has a size greater than two and if the sum of their relevant publications
exceeds two. As listed in Table 2.3 , the algorithm detected eight communities. As a
whole, they can be viewed in Figure 2.13 while the connections within each individual
group can be viewed in Figure 6.2-6.9.

When ranked based on the number of relevant publications per author, there are three
groups, namely Group 4, 7 and 8, that set themselves apart from the remaining groups by
having disproportionally high relevancy. Starting with the lowest of those three, Group
8. This group consists of 4 people, Ibeling, Icard, Kominsky and Knobe, with Icard the
most prominent author of this group. They published 6 relevant publications, most of
those publications discuss to some extent or another a language called simulation models,
which can be used to encode causal relationships. Additionally, they discuss other formal
languages such as causal models and Bayesian networks. The second research community
is Group 7 and consists of five people, i.e. Verheij, Bex, Walton, van Koppen and Prakken.
They contributed a total of eight relevant publications, all of which are placed within
the context of causality and law. Furthermore, applications of Bayesian networks and
a heavy emphasis on stories can be detected. The first one, Group 4, consisting of a
total of 16 people who together are responsible for 31 relevant publications. One unifying
aspect exhibited by many of the publications in this community, is the emphasis on logic,
as well as their attempts to formalise token causality from an inductive example first
approach. However, being of considerable size this group can thematically be further
segmented. In particular, one cluster seems to emerge around Vennekens, discussing a
variety of approaches to causation with the most notable ones being based on a formal
language called CP-Logic. Another is thematically grouped around causal models, where
Halpern seems to be the most dominant influence. While those are the two main areas
discussed in Group 4, this is by no means exhaustive. For example, the work of Bochman,
while being subject wise in closer proximity to the community around Halpern, cannot
be placed in either of the two groups with absolute certainty. A more significant failure
of the employed heuristic can be observed with the work of Cabalar and Fandinno, which
is thematically closer to the research conducted by Group 5, which investigates causality
in the context of logic programming.

To identify the most important authors, six different rankings are established. That is,
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Nr. Size Relevancy Relevant Publications Authors

1 15 0.53 8 Zhang Jiji, Eberhardt Frederick, Mayer Wolf-
gang, Li Mark Junjie, Baumgartner Michael,
Hyttinen Antti, Hoyer Patrik O, Jarvisalo
Matti, Glymour Clark, Danks David, Glymour
Bruce, Ramsey Joseph, Scheines Richard,
Spirtes Peter, Teng Choh Man

2 15 0.8 12 Goodman Noah D, Tenenbaum Joshua B, Ger-
stenberg Tobias, Chockler Hana, Fenton Nor-
man, Keppens Jeroen, Lagnado David A, Neil
Martin, Tenenbaum Josh, Ullman Tomer D,
Aleksandrowicz Gadi, Ivrii Alexander, Zultan
Ro’i, Lake Brenden M, Gershman Samuel J

3 5 0.6 3 Livengood Jonathan, Alicke Mark D, Rose
David, Bloom Dori, Sytsma Justin

4 16 1.94 31 Bochman Alexander, Beckers Sander, Ven-
nekens Joost, Blanchard Thomas, Schaf-
fer Jonathan, Halpern Joseph Y, Hitchcock
Christopher, Bruynooghe Maurice, Denecker
Marc, Weslake Brad, Huber Franz, Bogaerts
Bart, Cabalar Pedro, Fandinno Jorge, Leblanc
Emily, Balduccini Marcello

5 9 0.89 8 Zhang Haodi, Lin Fangzhen, Ferraris Paolo,
Lee Joohyung, Lierler Yuliya, Lifschitz
Vladimir, Yang Fangkai, Casolary Michael,
Bartholomew Michael

6 6 0.5 3 Santorio Paolo, Romoli Jacopo, Wittenberg
Eva, Ciardelli Ivano, Zhang Linmin, Champol-
lion Lucas

7 5 1.6 8 Verheij Bart, Bex Floris, Walton Douglas, van
Koppen Peter J, Prakken Henry

8 4 1.5 6 ibeling duligur, icard thomas, kominsky
jonathan f, knobe joshua

Table 2.3: Communities Overview

three rankings rely on the weighted degree of a vertex, with the second and third being
established using the weighted in- and out-degree respectively. The fourth, ranks the
vertices according to the results provided by the betweenness centrality, the fifth relies on
the values computed by the page rank algorithm and the last measures the importance of
an author using their publication count. By aggregating the top 15 authors, see Table 2.4,
across all 6 rankings into a single set, 33 important authors can be identified. Among those
authors such as Lifschitz, Icard, Bochman, Eberhardt, Hitchcock, Gerstenberg, Lagnado
and Halpern consistently score high across each ranking and are thus of particularly of
note. Using Gc one can observe that there have been collaborations between Bochman
and Lifschitz; Halpern and Hitchcock; Gerstenberg and Icard. Those collaborations are
also reflected in the kinds of approaches those authors ascribe to when studying causation.
That is, Both Lifschitz and Bochman focus on variants of the causal theory put forward
in [MT+97] and tend to approach causality from a regularity theoretic point of view. By
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contrast, Halpern and Hichcock strongly adhere to the structural equation framework.
Their investigations into causality, while emerging from the counterfactual tradition,
recently incorporate some regularity theoretic tools, e.g. extending causal models with
normality rankings. As opposed to all other authors mentioned, who tend to approach
causality from a more theoretical angle, Gerstenberg and Icard, set themselves apart, by
conducting empirical studies investigating how humans form their causal judgements and
what role the attribution of responsibility play in those judgements. Additionally, they
investigate the role of causation in the legal domain. Moreover, similar to Halpern they
tend to follow the counterfactual approach to causation and sometimes use structural
equations for their modelling. Eberhardt, who cooperated with Clark Glymour on
[GDG+10], focuses on the discovery of causal structures. This includes formalisms such as
causal Bayesian networks and seems to align closer with the part of the literature centring
around machine learning. Lastly, Icard seems to argue for the need for an expressive
formalism that emphasises the for him apparent procedural character of causation, thus
his latest publications introduce and discuss simulations models, which share a close
relationship to Turing machines. Having the highest number of relevant publications,
an honourable mention must be given to Vennekens Joost, who worked with structural
equations, CP-logic and action languages.

Moving on to the identification of publications deemed important by the outlined method-
ology using the data encoded in Gp. For each of the five proposed orderings (i.e. degree
centrality, in-degree centrality, out-degree centrality, betweenness centrality, page rank),
the 15 publications deemed most important, see Table 2.5, are selected and aggregated
into a single set, resulting in a total of 36 unique publications.

Particularly notable are the articles [Wes15], [BS17], [HH11], [GDG+10] and [HH15], all
of which are ranked highly across all measures. All publications use causal models as
their preferred method of encoding causal relations. While all of those publications
take on a counterfactual perspective, [HH11], [Wes15] and [HH15] expand the causal
model framework to incorporating some aspects of the regularity theory of the causal
model approach. For example, this is accomplished by extending causal models such
that they allow for the expression of normality. By contrast, [BS17] argues that being
more conservative when selecting appropriate causal models, should be preferred over
incorporating additional widgets into the structure of causal models itself. As allowing for
defaults in causal models does not only increases their complexity, but also provides too
much flexibility. [GDG+10] does not engage with the debate about normality in causal
inference. Instead, it heavily criticises the attempt of inductively defining causal models
from small examples alone, a strategy employed throughout most of the literature.

Moreover, this set of publications will be increased by adding all publication from Sr
0 and

by including all publications with 0 in- or out-degree (wrt. to Gp) that have a higher than
average (w.r.t. their respective cohort) degree. This result in a set of 44 publications.
Meaning that the publications “Causal Reasoning in a Logic with Possible Causal
Process Semantics”, “On the Conditional Logic of Simulation Models”, “Evaluation
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of Causal Arguments in Law: The Case of Overdetermination”, “Explaining Actual
Causation via Reasoning about Actions and Change”, “Probabilistic Reasoning across
the Causal Hierarchy” and “Arguing about Causes in Law: A Semi-formal Framework
for Causal Arguments” are added to the set. Finally, after removing books from this set,
i.e. removing “Counterfactuals”, “Causation: A User’s Guide” and “Actual Causality”,
as well as removing older publications from authors having more than two important
publications, i.e. removing older publications from “Denecker”, “Halpern”, “Hitchcock”,
“Icard”, “Lagnado” and “Vennekens”, it contains 36 publications only. 8 Let this set be
called F . The graph induced from F can be observed in Figure 2.14.

To conclude, some literature suggestions are based on the whole graph Gf irrespective of
the relevancy marker. That is, by analysing Gf it is possible to provide some literature
recommendations based on the number of citations a publication has received. Starting
with the five articles with the greatest amount of citations, i.e. “Causes and explanations:
A structural-model approach. Part I: Causes” [HP05], “Causation” [Lew74], “The intran-
sitivity of causation revealed in equations and graphs” [Hit01], “Structural Equations
and Causation” [Hal07] and “Two Concepts of Causation” [Hal04]. Particularly notable
is [Lew74], as it is one of the foundational publications responsible for the current surge
of interest in the counterfactual approach to causation [BHM09]. Its perceived influence
is further supported by the fact that all authors represented in the list above build upon
Lewis’es legacy by discussing causation from a counterfactual point of view. However,
they differ in their preferred language to represent causal dependencies and in their
specific definition of token causality.

Finally, some book recommendations can be given as well. The top five most cited books
on the topic of causation are, “Causality: Models, Reasoning and Inference” [Pea09],
“Making things happen: A theory of causal explanation” [Woo05], “Causation, prediction,
and search” [SGSH00], “Causation, prediction, and search” [SGSH00], “Causation in the
Law” [HH59] and “Counterfactuals” [Lew13]. Honourable mentions should be given to
the sixth place “Actual Causality” [Hal16a], which provides a great summary of the vast
amount of work put forward by Halpern on the topic of causation.

Having defined a set of relevant publications, the next step is to perform a detailed survey
of the content put forward in those publications. This can be found in Chapter 3 the
objective of which is to use the set of important publications to identify all languages
used for encoding causal relationships, all attempts made towards defining token causality
and all benchmarks proposed to test the capabilities of said definitions.

8[VBD10, BVKPV10, LLLY10, LY10, GDG+10, CH10, GL10, HH11, Shu11, Bri12, Bau13, HHEJ13,
HH15, Wes15, CFKL15, BV16, Sch16, Hal16b, BS17, WG17, IKK17, ACHI17, FG17, LG17, Boc18a,
II18, BV18, Boc18b, DBV18, BS18, DBV19, LSW19a, LBV19, LSW20, KS20, II20]
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CHAPTER 3
Formalising Causation: A Survey

The quest of formally capturing token causality, brought fourth a plethora of definitions,
most of which require some kind of formal representation of causal relationships. May it
be equations, rules or mechanisms, the diversity of languages developed in the context of
causality is apparent when surveying the publications in F . Although there are some
rather popular contenders, the dust has not yet settled on a commonly accepted formal
language. Hence, Section 3.1 aims to introduce and roughly classify the diverse range of
languages discussed in the publications of F .

The ongoing proposal of new languages, however, is only one side of the coin. That is, the
literature contained within F is littered with definitions that try to capture the elusive
concept of token causality from ever so slightly different angles. Being so numerous,
Section 3.2 has to be more economical and thus introduces token causal definitions on a
rather superficial level, e.g. providing context of its inception, identifying the underlying
language and the approach followed in their construction.

It is nice to have languages and definitions, however, their value is drastically reduced, if
they fail to satisfy their intended purpose, i.e. capturing token causality. Unfortunately,
the whole enterprise of the surveyed literature is to find a formal definition of token
causality, thus it is impossible to formally prove whether a particular definition is the
“correct one” [Hal]. Hence, authors in the surveyed literature, tend to run their definitions
against a battery of benchmarks, to check whether they comply with human intuition.
Therefore, to complete the survey contained within this chapter, Section 3.3 will provide
an overview of the most frequent examples found in F .

Lastly, it is important to understand that this chapter is intended as an overview, thus it
is void of any proper technical definitions and analysis. A more technical inquiry into
the subject is postponed to Chapter 4.

37



3. Formalising Causation: A Survey

3.1 Token Causality: Languages
The goal of this section is to convey a rough idea of the available languages, essentially
serving as point of reference, guiding the reader to various corners of the literature. This
is accomplished by ranking them by popularity and classifying them based on their
capabilities, as well as discussing each language family informally.

However, before moving on, some preliminary remarks. This section uses the notion of a
language family. This concept intends to express some relation among several languages.
Although not rigidly defined family membership is declared either based on the authors
own volition, e.g. it is explicitly stated in a publication that a certain language belongs
to a particular language family1, or if the language in question is clearly an extension or
a generalisation of another older language.

3.1.1 Overview
When surveying the publications in F one can detect a total of 9 language families
containing roughly 18 individual (semi-)formal languages (i.e. ignoring natural language,
abbreviated here with NL). However, only two families contain more than one language. In
an attempt of gauging the importance of the respective language families, their popularity
is measured using the frequency of mentions in the publications from F . Here it is
important to point out that by far the most discussed language family is the one building
on causal models, with the CP-Logic (Causal and Probabilistic Logic) family and the
Non-Monotonic Causal Theory tying for a distant second place and lastly with neuron
diagrams taking the third place. To obtain a more fine-grained notion about which
publication discusses which language, please consult Table 3.1. Moreover, to obtain a
quick overview of the various languages and their properties, please consult Table 3.2.

Starting with the most popular, the causal model family. It contains the greatest amount
of languages, making it by far the most developed strain of formalisms. The original,
abbreviated here as CM and developed in [Pea95], allows for multi-valued variables which
are partitioned into exogenous and endogenous variables, a distinction common in the
causality literature. Exogenous variables being the variables whose values are determined
by factors outside of the model, while the values of endogenous variables are determined
by the values of exogenous variables based on the rules relating the variables within the
model. The variables are put in relation using a set of structural equations (see Section
3.1.2). While causal dependencies expressed using CM, are deterministic and can in theory
be cyclic, the literature focuses mostly on acyclic causal dependencies. Furthermore, while
being more or less atemporal, there are some implicit temporal aspects emerging from
the manner in which causal dependencies are represented.2 The seminal CM was further
developed and extended on multiple fronts. For example, the exists CM+T, developed in
[BV18], which extends CM by adding a timing function to make temporal information
explicit; CM+D, developed in [BS17], which allows one to distinguish between default and

1For an example, see [DBV18]
2This is particularly relevant for acyclic causal models [BV18]
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3.1. Token Causality: Languages

deviant values of variables; CM+N and CM+N2, developed in [Hal08] and [BS17], both
of which use a possible world semantics to introduce a notion of normality into causal
models. Moreover, there are also attempts to generalise CM to model probabilistic causal
dependencies, those are CM+P coined in [FG17] and CM+P2 found in [TK11]. All of the
above formalisms retain the distinction between endogenous and exogenous variables.

The second most popular, as well as second most populous family is the CP-Logic family,
which contains two independent languages CP and CP2, as well as CP+N which is an
extension of CP. The first has its origin in [VDB09], while the second was introduced only
relatively recently in [DBV18]. Both formalisms are closely related to logic programming
[DBV19]. The third was developed in [BV16] and extends CP by providing the necessary
tools for formulating statements using several notions of normality, allowing one to
perform normative reasoning within CP+N. To summarise some key properties of the
introduced languages. CP is capable of expressing causes on a first-order level, it is
designed to model relations between causes and effects in a probabilistic fashion while at
the same time allowing them to be cyclic. Moreover, theories within CP are interpreted
using a semantic with an explicit temporal dimension. Although CP is already equipped
with some sort of default reasoning, CP+N extends CP with additional machinery allowing
it to handle normative statements. By contrast, CP2 is solely propositional and atemporal.
Moreover, causal dependencies are deterministic as well as acyclic. Yet making a default
and deviant distinction, CP2 is capable of default reasoning. Furthermore, all formalisms
in the CP-Logic family require one to specify endogenous and exogenous variables.

The publications in F discuss two slightly different variants of non-monotonic causal
theories. However, according to [Boc18a] both versions are equivalent. Hence, they
are counted as the same language in this survey. To be precise, CT will henceforth
reference the version developed in [Boc03] as it has a higher relevance in the context
of token causality (see [Boc18a, Boc18b]). By contrast, within the context of F the
original version, introduced in [MT+97], was never used to develop a definition for token
causes. CT is essentially a binary propositional language, extended by an atemporal
causal inference relation wrapped in a non-monotonic fixed point semantic. Moreover,
while not explicitly discussed in the context of token causality, CT has the machinery
necessary for default reasoning. Furthermore, diverging from the previous formalisms no
distinction between endogenous and exogenous variables is made.

The original form of neuron diagrams was, according to [Hit07b], first introduced in
[Lew86]. The size of the language family surrounding neuron diagrams can unfortunately
not be properly gauged. This is because in most cases neuron diagrams are only introduced
and used in an informal manner [EW10]. Hence, this thesis uses ND to reference the general
family of neuron diagrams, rather than to a specific language. ND differs drastically from
other formalisms discussed in this survey. The main reason supporting this judgement is
that ND is (in practice)3 a purely graphical formalism. Unfortunately, it is quite difficult
to assess the capabilities of ND. However, they do not allow for cyclic dependencies

3[EW10] provided a definition of neuron diagrams that does not rely on a graphical representation.
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among causes and their effects and they usually consider those relations as deterministic.
Additionally, ND distinguishes commonly between endogenous and exogenous variables.
Similar to CM, ND is not a formalism that explicitly deals with time. However, ND diverges
from CM, by distinguishing between default and deviant values, i.e. ND provides some
form of default reasoning.

Apart from the top most commonly discussed languages, F contains a plethora of other
formalisms. Firstly, the language called situation calculus. It has its origin in [MH69].
However, it seems that there are several variants of situation calculus. Nevertheless,
within the publication in F , only [BS18] and [KS20] are using situation calculus to model
causal dependencies. As the variants used in both are identical, it is the only one discussed
and thus is henceforth referenced as SC. Secondly, there exists rather new and unique
formalism based on so-called simulation models while relying heavily on conditional logic
and Turing machines. This formalism is introduced in [II18] and referenced here with SM.
Thirdly, there is the action language AL, introduced in [BG00] and re-purposed for the
application in the realm of causality by [LBV19]. Fourthly, [LSW20] introduced a domain
specific causal language designed for modelling arguments in legal argumentation and
liability disputes. They called it “(semi-)formal framework for causal argumentation”,
abbreviated here with FCA. Fifthly, [Bau13] extended classical first-order logic allowing
him to express type causal relationships, his approach is abbreviated with FOL+. Lastly,
there is causal abductive reasoning, referenced here using CAR. [BVKPV10] used CAR in
conjunction with another formalism concerned with modelling argumentation to build an
extensive framework for establishing facts in legal cases.

3.1.2 Causal Models
The original causal model formalism CM was spearheaded by Judea Pearl. Being the
most popular formalism, it is discussed by a plethora of different authors making it
fairly unique among the formalisms captured in this survey. The assumption present in
most members of this family is that the causal mechanisms governing the world can be
described by a set of (random) variables and a set of deterministic structural equations4

[Hal15b].

A structural equation allows one to condense all type-causal relations that may influence
a variable into a single equation. Those equations are not algebraic and are best
understood as assignments, i.e. they fail to be symmetric. A rather sensible choice, as
a cause influences its effect, while an effect does not necessarily impact its cause. For
example, a volcanic eruption may cause one to reconsider their plans of going on vacation
in Pompeii, yet not taking a vacation in Pompeii is (most likely) not a cause of said
volcanic eruption. Although causal models can have cyclic relationships among their
variables, so called acyclic causal models tend to be the primary subject of investigation.
Intuitively, a causal model is considered acyclic, if one can order the endogenous variables,
such that the variables lower in this order are independent of the above them. Moreover,

4The concept of structural equation emerged according to [BS18] in [Sim55]
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acyclic models allow for simpler reasoning, this is because in such models the value
of all endogenous variables can be uniquely determined given any context, i.e. a value
assignment of the exogenous variables. By contrast, cyclic models could have several
solutions to the set of structural equations, i.e. there exists more than one fixed point in
the computation [Hal15b].
Since structural equations encode all possible causal relations between variables it is
possible to perform interventions on them. Intuitively, performing such an intervention
is akin to asking the question “What would happen, if I change the value of variable
X from x to value x′?”. Technically, one intervenes on a causal model by replacing
existing structural equations with fixed values or different structural equations and by
recomputing the solutions for the set of structural equations. Another peculiarity of
structural equations is that they are deterministic. Initially, this may strike as a rather
strange decision, as it is tempting to declare the relationship between cause and effect to
be probabilistic, e.g. a lightning strike has a 60% chance of causing a forest fire. However,
a deliberate choice was made to diverge from inherently probabilistic approaches such as
Causal Bayesian Networks, by keeping structural equations deterministic. [Pea09] justifies
this by drawing an analogy to the Laplacian and the quantum mechanical conception
of physics. That is, the former considers natures laws as deterministic with uncertainty
only emerging due to ignorance, while the latter understands determinism as a mere
approximation of inherently probabilistic laws. However, as the goal of this endeavour is
to capture and model the intuitive human-level understanding of causality, the focus on
the former is apt [Pea09]. Similarly to Pearl, Halpern advises against probabilistic causal
dependencies, suggesting instead the expansion of the model such that this uncertainty
can be described, e.g. adding variables such as dryness or altitude. However, as this is
not always possible, one can easily push probability out of the equations by putting a
probability distribution over the exogenous variable in a causal model [Hal15b, Hal16a,
p. 13].
Over the years, causal models have been criticised by many. Neglecting criticism about
the lack of generalisation to a predicate level raised in [BS18], most of its critiques have
lead to the creation of independent extensions.
Firstly, to overcome the confinement to deterministic structural equations, [FG17] pro-
posed CM+P as a probabilistic extension of causal models. However, this is only the most
recent of such attempts, with at least another one, i.e. CM+P2, detected in the literature.
This indicates that irrespective of Pearl’s arguments, seem to be some potential applica-
tions and thus some desire for a purely probabilistic causal framework. One particular
advantage of CM+P and others of its kind would be a better resonance with common
scientific theories, most of which are probabilistic in nature [FG17].
Secondly, [BV18] advocate for extending causal models by a timing function, which
essentially allows one to incorporate temporal information directly into the causal model.
Hence, they create CM+T, which is better suited to deal with those problematic examples
in the literature that derive their difficulty from requiring temporal precision. By contrast,
if one wants to model time within CM, one is required to simulate it by adding timestamps
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to the variables in a causal model. While cumbersome, [II18] argues that requiring
explicit temporal information during the modelling process, is too stringent especially
since there are cases where causal relationships do not require such an information.5

Finally, a significant thrust behind the desire to improve upon CM, is a group of examples,
called non-structural counterexamples, that suggest that isomorphic causal models can
have differing causal intuitions. Although contested, see [BS17], it is the perceived failure
of causal models on that front, that motivated the extension of causal models with
some theory of normality, e.g. CM+D and CM+N. CM+N requires the modeller to rank the
various contexts based on their perceived normality, i.e. CM+N operates on a possible
world semantic. This extension equips the modeller with a high degree of flexibility
when constructing a causal model. On the one hand, this provides certain advantages,
such as allowing one to capture the distinction between conditions and causes present
in the legal tradition, with conditions being values of variables with a higher degree
of normality. While on the other hand, it induces a host of other problems, e.g. it
provides the modeller with the ability to hard-code their desired token causes into the
model. This further exacerbates Hall’s complaints about structural models. That is,
he argues that the structural equations approach places a much greater emphasis on
problem modelling, amounting to little more than building the solution into the model
[BS17, HH15, Wes15, EW10].

3.1.3 CP-Logic

The language CP, seems to be the first member of the CP-Logic family. It was developed in
[VDB09] as a probabilistic logic programming language capable of expressing probabilistic
causal laws with an informal semantics independent from the epistemic agent-based
semantics of deterministic logic programs and the frequentist interpretation present in the
probability calculus. They view probabilistic causal laws as follows. Each law connects a
cause with its possible effects. That is, an event6 has multiple possible effects. If such
an event occurs, based on the probability indicated by the rule, only one of the possible
effects will be realised. On the semantic side, they took inspiration from action languages
and used an approach championed by Shafer to create an appropriate semantic for this
language. In particular, the underlying idea is that causal and probabilistic concepts
should be evaluated dynamically, i.e. they should be understood as a story explaining
how the domain evolves. Shafer formalises this intuition by relying on probability trees.
In such a tree, vertices represent states and edges represent events that induce a state
transition and are labelled with probabilities.

5Although in this particular case CM+T allows one specify the timing only partially, which somewhat
weakens this argument.

6Due to the fact that this language operates in the intersection of both logic programs and probability
theory, they have to distinguish, between events that cause transitions between states and events that
are set a collection of possible outcomes. Hence, they follow Shafer and call the former Humean events
and the latter Demoivrian events
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In [VDB09] they contrast their language against several other languages. Most notably,
CM and CT. Firstly, CP is more expressive, as well as seemingly better suited for modelling
cyclic causal relations than CM. Hence, rather than focusing solely on acyclic causal
relations, most of the discussion surrounding CP omits this restriction. Another supposed
benefit of CP is that it alleviates one from the requirement of compressing all causal
influences on a variable into a single structural equation. Secondly, CP differentiates itself
from CT by having an initial state, at which all variables are in their default state, which
changes during the evaluation process. Hence, CP is capable of distinguishing between
default and deviant values, requiring explanation only for the latter. By contrast, the
original semantics of CT is a fixed point semantics that requires an explanation for any
variable value. Put differently, CT treats truth and falsity symmetrically, by requiring a
causal explanation for both positive and negative occurrences of propositions, while in
CP truth and falsity are treated asymmetrically due to the fact that only the deviation
from the natural state of a variable must be causally explained.

Moreover, due to its constructive nature CP rules out any unfounded causes, i.e. causes
that can cause themselves, a property not satisfied by CT. One repercussion of this is the
inability of CT to express cyclic causes. Unfortunately, this cannot be avoided, as the rule
structure responsible for unfounded causes is required to introduce exogenous variables
into a theory. A feature not required in CP as this distinction is already made explicit in
this language. To summarise the advantages of CP are the probabilistic component in
the endogenous part of the model, the ability to encode default and deviant variables
and its temporal semantic [BV16, VDB09].

However, CP is not without criticism. Firstly, since a theory in CP is defined as a
finite set of laws, the language is naturally restricted in its expressibility, e.g. one would
be unable to express a scenario where a die is rolled as long as it takes to obtain a
six. Secondly, all outcomes of an event must be known during the modelling process.
Thirdly, it is impossible to model events that cancel out or reinforce each other’s effects,
a defect somewhat remedied in CP2. Fourthly, the language is ill-equipped to speak of
contributing causes, e.g. turning on a tap would not instantaneously cause a basin to
be full, but only contributes a certain amount per time unit [VDB09]. Fifthly, [BS18]
criticises the expressivity of CP on the grounds that it is unable to distinguish between
properties and actions, as well as the non-existence of quantified effects. Lastly, similar
to the extension of CM, CP was extended to CP+N in [BV15], motivated by the desire to
produce normative statements within the CP framework. Without going into details, they
leverage the probabilistic nature of CP to distinguish between statistical and normative
normality. Both of which are implemented by operations on the possible set of effects
triggered by an event. This equates to removing certain effects from CP-rules depending
on the type of normality and can be envisioned as refining the probability tree based on
how normal each branch is.

The language CP2, seems to be an entirely separate language, declared to be within
the same family as CP. CP2 is a language that allows one to model causal processes
by representing the underlying causal mechanisms of a situation. Secondly, taking
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inspiration from neuron diagrams, the authors argue for the necessity of distinguishing
between conditions that trigger other causal mechanisms and conditions that allow for
the preemption of such mechanisms. This distinction relates CP2 to non-monotonic
formalisms, such as Default Logic [Rei80] or Answer Set Programming (see [BET11]).

On a syntactic level, a causal theory in CP2 is a set of causal mechanisms, with each
causal mechanism being described by a set of triggering conditions, a set of enabling
conditions and an effect. The triggering conditions set the mechanism in motion that
produces the effect, if all enabling conditions are met. In stark contrast with CP, theories
in CP2 are a non-empty sets of deterministic causal mechanisms without any cyclic causal
dependencies.7 Although, according to [DBV19] the language can easily be extended to
allow for cyclic causal relationships. An additional oddity of such theories is that they
cannot contain contradictory mechanisms, i.e. one mechanism producing an effect and
another producing the negation of this effect [DBV19].

From a semantic perspective, CP2 not only implements the law on inertia, i.e. a change
in state requires an external force, but also adheres to Leibniz’s principle of sufficient
reason, i.e. every true fact has a reason. This is accomplished by relying heavily on the
default-deviant distinction. To be more precise, for every endogenous proposition it is
assumed that the causal theory contains all causal mechanisms affecting it. Furthermore,
each endogenous proposition has either a default or deviant state. Since a causal theory
can only contain non-contradictory mechanisms, mechanisms can only have deviant
effects. Now, with every proposition being in its default state, a causal process starts
by firing applicable but unsatisfied causal mechanisms, i.e. mechanisms with satisfied
conditions but unsatisfied effect. The firing of this mechanism forces the proposition to
take on its deviant state. The process continues until all causal mechanisms are satisfied.
Notice that due to the structure of a causal theory, a proposition can change its value
at most once. Hence, any proposition remaining in its default state is true by inertia.
Moreover, while deviant states are justified by the rule causing the state switch, default
states are justified by the fact that no rules with the appropriate effect are satisfied
[DBV19].

Due to the theories in CP2 being non-contradictory sets of causal mechanisms, the
language can not handle scenarios with alternating variables, e.g. it is unable to model a
simple light switch. In [DBV19] additional work and open questions are surrounding this
language are mentioned. That is, they express the need to develop extensions that allow
for the modelling of probabilistic and cyclic causation. Furthermore, to capture a greater
array of real-world problems elevating this language to the first-order level is required.
Moreover, the language remains unexplored from both the computational complexity, as
well as the proof theoretical perspective.

7Unfortunately, it is not specified, whether such theories must be finite or can be infinite in size.

46



3.1. Token Causality: Languages

3.1.4 Non-Monotonic Causal Theory
CT was originally conceived as a non-monotonic formalism for reasoning about action
and change in AI in an attempt to deal with the frame problem, see [GLL+04]. At its
core, it tries to adhere to Leibniz’s principle of sufficient reason, as well Pearl’s claim
that relevant situations are determined not only by the rules that belong to the causal
theory, but also by what does not belong to it. The latter is accomplished by using the
non-monotonicity of CT.

Syntactically CT is fairly simple. That is, it extends an ordinary propositional language
with a causal relation, which expresses that a proposition causes another proposition.
This causal relation can be defined in several ways. However, in [Boc18a] a modified
inference relation taken from the input-output logic described in [MVDT00a] was chosen.
This inference relation is a production inference relation, a defining feature of which
is its failure to satisfy the reflexivity postulate, i.e. a proposition cannot cause itself.
However, in order to arrive at a causal inference relation, [Boc18a] strengthens the
relation further, such that it is fairly similar to classical entailment, but for the fact that
both the reflexivity and contraposition remain unsatisfied. On top of the logic obtained
by extending propositional logic with the described relation, resides a non-monotonic
semantics. This semantic ensures that only those models that are closed w.r.t. the causal
inference relation are accepted. Resulting in every proposition being causally explained.

As noted in [Boc18a] CT has some glaring representational deficits. The first is that
CT uses only binary variables and is therefore unable to encode situations that are
easily modelled by CM. The second is its inability of expressing notions of normality
or perform any other form of default reasoning. However, [Boc18a] claims that the
formalism originally developed in [MT+97], is well equipped to remedy those deficits.
Moreover, the causal relation introduced is atemporal, thus similar to causal models, if
one deals with time-critical scenarios it is necessary to marking propositions with time
stamps. Lastly, it is one of the few languages within causality literature that does not
explicitly distinguish between endogenous and exogenous variables [Boc18a].

3.1.5 Neuron Diagrams
In their simplest form, a neuron diagram can be understood as a directed acyclic graph,
where each vertex, called neuron, can either fire or not, often indicated by its colour. A
neuron can be either exogenous, i.e. it has no incoming edges, or endogenous, i.e. it has
at least one incoming edge. Moreover, edges between neurons can also be separated into
two categories, i.e. stimulating edges and inhibiting edges, often distinguished through
having a triangle and respectively a circle as arrowhead. In its simplest form, such
neuron diagrams follow a fairly straightforward semantic. That is, while it is externally
specified whether an exogenous neuron fires or not, an endogenous neuron fires if and
only if it is stimulated by at least one firing neuron, and inhibited by zero firing neurons
[Hit09, EW10, Bau13].
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Unfortunately using only one kind of neuron is insufficient to capture many examples,
e.g. encoding a conjunction is already difficult. Hence, both [Hit09] and [Bau13] define
and utilise alternative, more complicated neurons. For example, one could consider a
stubborn neuron that only fires, if all or some of its predecessors fire as well, or a neuron
that only fires if the number of stimulating inputs is greater than the number of inhibiting
inputs.

Using neuron diagrams as a formalism to encode causal structures is particularly ubiqui-
tous in the philosophical literature. Due to their graphical nature, they provide a rather
intuitive method of representation of causal dependencies for the small scale examples
common in the literature. This simplicity naturally restricts this language in its expres-
sivity, e.g. in their common form they cannot encode causation by omission. Their use
was criticised in [Hit09] on similar grounds. That is, it is their failure to encode complex
relationships between variables, that makes him an advocate for the use of structural
equations, as for example used in causal models. Although acknowledged in [EW10] they
justify the use of neuron diagrams by citing their simplicity. In opposition to Hitchcock,
Hall criticises the structural equation approach in [Hal07]. That is, while acknowledging
their value, he perceives their status as inflated, favouring neuron diagrams instead. In
particular, he endorses them not only due to their simplicity, but also due to their ability
to encode a default/deviant distinction. [Bau13, EW10, BV16].

3.1.6 Situation Calculus

Situation Calculus has a long history in the causation literature. However, the primary
purpose of situation calculus is the modelling and reasoning about dynamic systems,
whereas formalising causality was only a secondary objective. During the 2000s the
causality literature experienced a surge of interest in the situation calculus. At that time
Judea Pearl tried to use situation calculus to remedy some deficits with the causal model
approach. In particular they wanted to rectify the failure of CM to distinguish between
transitional and enduring conditions [VBD10, KS20, BS18].

Being a rather involved formalism, describing it in an informal manner is bound to
produce a rather muddied picture. Hence, the subsequent paragraph tries to convey a
rough intuition only. SC is a many-sorted situation calculus variant that is used to define
a basic action theory (BAT). According to [KS20] and [BS18] the basic action theory
approach was developed by [Rei01]. A BAT has several components.

Firstly, action terms. Such terms represent actions that can be performed in the modelled
system, e.g. a car taking a left turn. Moreover, in a BAT there must be a set of action
precondition axioms that specify the preconditions of a situation that are required for
the execution of a certain action. Secondly, situation terms. A BAT requires that the
initial situation of a system must be specified by using a set of initial state axioms, e.g. at
which intersection a car may be. From there, any other (complex) situation term consists
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of a sequence of action terms8 and the initial situation, e.g. at which intersection a car
may be after taking a left and a right turn. The language is equipped with a predicate
that encodes the partial ordering of those situation terms, thus allowing one to checks
whether one situation can be reached from another by performing a sequence of actions.
Thirdly, fluents. In a BAT fluents are situation dependent relations, e.g. a relation that
check whether a specific car is at a certain intersection in a particular situation. Such
fluents are subjected to a set of successor state axioms, those specify after what actions
and in which situations a fluent can change its value. It must be noted that in a BAT
it is permitted to use non-fluent relations that are situation independent relations, e.g.
to encode the layout of a street network. Lastly, a BAT must also contain additional
axioms, e.g. unique name axioms.

Of the discussed languages SC is deemed to be on the more expressive side, so much
so, that it is possible to produce a token causal definition that can identify causes of
conditions expressed in first-order logic. Additionally, SC is equipped with a plethora of
features, that allow for the modelling of actions. However, according to [BS18] SC still
lacks in expressiveness, identifying the need for language that can model time explicitly
and that allow for concurrent actions, i.e. a situation calculus variant where actions are
only partially and not totally ordered. Although contested in [BS18], relying on some
form of situation calculus to model causality has been criticised in [VBD10]. They argue
that its heavy machinery is not entirely necessary in the context of causality, i.e. they
speak of it being an “overkill” [BS18, KS20].

3.1.7 Simulation Models
SM take a rather unorthodox view on modelling causality. At its core, this language
is founded on the belief that causal (and conditional) reasoning is closely related to
simulations. A belief that is supported by some empirical evidence, see [Jel07]. Expressed
differently, in order to answer a question such as “what would have been if?”, humans
simulate the hypothetical scenario in their head. Inspired by that this language provides
a flexible framework for evaluating the truth values of propositions, by simulating
conditionals using simulation programs, which opens up the possibility of incorporating
generative models developed using deep neural networks into the reasoning process.

Syntactically the major feature of the conditional logic underlying simulation models is
the ability to express interventions, i.e. one can construct sentences such as “If A were
true, then B would be true”. In [II18], interventions can only be expressed as conjuncts
of propositions, while all remaining formulas have the full toolset of propositional logic
available. Sentences of this language can be evaluated using causal simulation models,
they consist of a Turing machine and a start tape, encoding the truth values of each

8If the sequence of action terms is variable free, such a sequence is called a narrative. Since the
literature in the intersection between law and causality heavily emphasises the importance of stories,
there may be the potential for applying the concepts discussed in [BS18] and [KS20] within the field of
legal reasoning.
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propositional variable. A statement containing an intervention evaluates to true if the
proposition that should hold after the intervention is true on all halting executions of
the Turing machine where the values of variables that were specified in the intervention
remained the same value as specified in the intervention.

Some relevant properties of this approach are that it does not require temporal information
when modelling causal scenarios, as according to [II18] requiring temporal information
always be made explicit is too stringent. A similar view is also present in the design of
the classical causal models. While being similar in one regard, according to [II18] those
two approaches deviate drastically on one of the fundamental principles of conditional
reasoning, namely cautious monotonicity.

There are several possible pathways for improving this language. The first is to elevate
SM to the first-order level, allowing one to perform interventions on a first-order basis.
The second is to introduce probability into the system, and the last would be to impose
orderings on the variables, e.g. through timestamps, in order to provide a language akin
to acyclic causal models, i.e. causal models with no cyclic causal dependencies.

3.1.8 Other
Here the remaining less prominent, as well as less formal languages, i.e. FCA, AL, FOL+
and CAR, are discussed. FCA is the only domain-specific causal language discussed in this
thesis. Since it was designed for the analysis of causal arguments in legal argumentation
and liability disputes, it is deliberatively designed to be semi-formal. That is, while
[LSW20] acknowledges the benefits of fully formalised languages such as CM, they express
the concern that the technical details present in such fully formalised languages discourage
their application in law. FCA contains three basic structures. That is, factual propositions,
predicates for similarity, evidentially and causal links, as well as a set of inference rules.
The similarity and evidentially predicates, allow one to express the “similarity” between
propositions, as well as the existence of evidence for a certain proposition. The causal link
predicate is constructed as a ternary relation, two positions are used to link cause and
effect, while the last position indicates the certainty of the causal link, i.e. it determines
whether the specified cause normally or always produces the effect. This is precisely the
reason why, FCA has two inference rules, one being classical and the other one being
defensible. The meaning of those rules is conveyed using a set of rule schemata, expressing
properties such as “If there is evidence for propositions, those propositions hold” or
“Similar propositions cause the same effect”.

AL by [BG00] is part of a class of action languages, developed for reasoning about actions
and their effects and has close ties to non-monotonic formalisms such as Answer Set
Programming. In particular, this language has the ability to represent both direct and
indirect effects of actions. According to [LBV19] languages such as AL are required for
understanding token causality, as focusing on actions and their direct (as well as indirect)
effects allow for a deeper understanding of causal mechanisms [LBV19]. Semantically
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AL relies on transition diagrams, consisting of a collection of states and a set of triples
representing state transition induced by events. This language distinguishes between
events and fluents, which are propositions that can change in value over time. There are
three kinds of statements in AL. The first are called dynamic causal laws and express
that in the case of an event, given that all conditions (expressed as literals) hold, the
consequence of this law holds in the next state. The second are called state constraints,
one can use those to express that any state that satisfies the conditions of this rule
must also satisfy its consequent. The last, being executability conditions prevent events
from occurring, in case that the specified conditions hold. Similar to the SC, AL is
also a language designed for the modelling of action and change. However, according
to [LBV19], AL is better suited for the representation of indirect effects of actions, a
property that seems to be rather desirable [LBV19, Boc18a]9. In another comparison
with SC, [LBV19] highlights the simpler semantic of AL over SC, as AL does not rely on
first-order logic.

FOL+ relies on a light analytical toolbox, only employing material conditionals, standard
Boolean minimization procedures, and an additional stability condition. At its core, FOL+
uses first-order logic to express type causal relations. In particular, it uses predicates to
identify objects in the domain as events of a particular kind, allowing one to formulate
statements such as “an event of type A, causes an event of type E”, with the causal
relation being merely a shorthand for a set of first-order sentences with equality. However,
in order to evaluate such sentences appropriately, [Bau13] develops the notion of a
minimal theory, specifying what are minimally sufficient and necessary conditions in
order to interpret a material regularity (expressed using material implication) as causal.
Moreover, akin to many other approaches, [Bau13] proposes a possible extension of
FOL+, to account for notions of typicality and normality, i.e. similar to CM+N, this is
accomplished by ranking the variable assignments.

CAR is, as indicated in its name, related to other abductive model-based reasoning
approaches. In general, those approaches are a form of non-monotonic reasoning, that
try to find plausible explanations for the state of the world, with respect to an inference
relation, e.g. material implication [Pau93]. In particular, CAR is a formalism that operates
on the propositional level and tries to establish causes from hypothesis and causal rules.
An inference in CAR is called a story, those are defined similar to derivation in classical
logic, i.e. a story is a sequence of propositions where each proposition is either a hypothesis
or derivable from earlier propositions in the sequence using some causal rule. The emphasis
on stories in the introduction of the semantics of CAR reflects the story-bases approaches
present in the legal tradition. Moreover, the formal notion of a story, also adheres to
some of the properties desirable in the informal story-based approaches. In particular,
the requirement of a story to be internally consistent and the need to be plausible, i.e.

9Moreover, in [Boc18a] the following is stated: “According to Pearl, causal assumptions are encoded
in the missing links (that sanction, e.g., claims of zero covariance).”
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the story must conform with the knowledge about the world. In [BVKPV10] CAR was
used in conjunction with another formalism designed for modelling argumentation, to
build a more comprehensive formalism for studying establish facts in legal cases, e.g.
criminal cases [BVKPV10].

3.2 Token Causality: Definitions
The languages introduced may enable the modelling of causal dependencies. However,
this alone is not sufficient for identifying token causes. For example, the structural
equations in an acyclic causal model allow one to encode causal relationships on the type
level. Using those equations and a description of the world it is possible to determine the
precise value of each variable in the model [Hal15b]. Clearly, this mode of inference is
forward-looking, and is thus in stark contrast with the reasoning employed in the context
of token causality, which is characterised by a backwards looking mode of inference. That
is, the main objective is to identify a suitable set of variables that explain why a particular
variable has a specific value. Finding an appropriate definition for this kind of causality
is quite the undertaking, as indicated by the lively debate surrounding this subject, i.e.
given 9 language families containing 18 formal languages, a total of 32 definition are
discussed in the articles from F .10 Unfortunately, not a single one, is sufficiently precise
to satisfy all the toy examples found in the literature without contention. However, the
linage of token causal definitions developed by Halpern is often used to benchmark new
definitions, making it the closest the literature has to offer to an accepted standard.

The section unfolds as follows. Firstly, the definitions build on CM will be discussed.
Secondly, all definitions relying on formalisms other than CM are presented. Thirdly,
the definitions found using semi-formal or informal languages are highlighted. Lastly,
the section concludes with the categorisation of the definitions introduced above. To
reiterate, all of the above introductions, refrain from engaging with technicalities. Such
content can be found in Chapter 4 for a small selection of the definitions discussed here.

3.2.1 Definitions based on Causal Models
Starting with the definition formulated in the most popular formalism CM. The chrono-
logically first definition, referenced as HP-01, is due to Halpern and Pearl (HP). It was
originally formulated in [HP01], inspired by Pearl’s notion of causal beam (see [Pea98])
and uses counterfactuals to identify token causes. Shortly after [HP03] proposed an
example, that seemingly demonstrated that HP-01 is insufficient. Leading to the creation
of the updated HP-definition, abbreviated as HP-05. It originated in [HP05] and is by far
the most popular, i.e. the most widely used and discussed, definition yet. Being merely
an update of the original, HP-05 remains firmly rooted in the counterfactual tradition.
Unfortunately, it was demonstrated in [ACHI17] that the computational complexity of

10Four of the 32 definitions, i.e. But-For, INUS, NESS and “causally relevant factor”, tend to be
defined using natural language.
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finding causes with HP-05 is DP
2 -complete11 for both binary and general causal models.

By contrast, [EL02] demonstrated that HP-01 is merely NP-complete in the binary and
ΣP

2 -complete in the general case. Fortunately, the necessity of HP-05 was challenged
in [Hal16b], where it is argued that the model used to discredit HP-01 neglected to
properly formalise the provided scenario. This was followed up by demonstrating that
with a small, but unfortunately not always natural, expansion of said model HP-01 will
produce judgements similar to HP-05. In [Hal15a] an new variant of this family was
formulated. This definition is referred to as the modified HP definition and is abbreviated
here with HP-15. According to Halpern this definition is not only conceptually and
computationally simpler, but also provides the more preferable answers. That is, it deals
with the critique raised in [HP03] and it handles various examples better than HP-05,
e.g. Hall’s non-existent threat example [Hal15a, Hal16a, Hal07, p. 27]. With respect to
computational complexity, HP-15 is NP-complete in the binary and DP

1 -complete in
the general case, making it the most efficient HP-definition yet [Hal16a, p. 153-154]. In
[FG17] a variation of HP-05, namely HP-05c, was presented. The purpose of which
was to adjust HP-05 to make contrastive causal judgements. This extension is based on
the view that causation is contrastive in nature, thus it is not a binary, but a tertiary
relation. For example, administering one dose of medicine saves the patients life and
administering a second dose is absolutely redundant, i.e. same outcome as giving only a
single dose. Hence, giving two doses instead of zero caused the patient to survive, while
giving two doses instead of one is immaterial to the person’s survival.

There are also independent definitions that use only the basic causal model variant CM.
Firstly, there is Hitch-01 which was provided in [Hit01]. Secondly, there is Wood-03
formulated in [Woo05]. Thirdly, in [GDG+10] two simplified versions of HP-05 are
proposed, abbreviated here with Simple and SimpleJ. However, all of the above
disagree with HP-05 on some of the traditional examples found in the literature. Lastly
and particularly of note is the “Partial Theory of Actual Causation”, or abbreviated PTC,
put forward in [Wes15]. He claims that his version improves upon the HP-05 definition.
This is partially accomplished by incorporating some tools from the regularity theoretic
tradition without extending the causal model by some additional structure.

Although subject of contention, e.g. see [BS17], over the years HP-05 was extended
by some form of default reasoning, i.e. they incorporated a normality ordering over
various contexts. This extension was motivated by the discovery of several so-called
non-structural examples, i.e. examples that have the same causal model and yet exhibit
different intuitive answers. Hence, it using such extended causal models provides the
necessary flexibility, to resolve the issues put forward by those examples. Additionally,
this notion of normality brings forth the possibility of introducing normative reasoning
into causal judgements. One such definition found in the selected literature is HP-05d,
which is a definition that extends HP-05 with default reasoning. However, as mentioned

11DP
k is defined in [ACHI17] as the set of all languages L3 such that there exists a language L1 ∈ ΣP

k

and a language L2 ∈ ΠP
k such that L3 = L1 ∩L2. ΣP

k and ΠP
k are simply levels on the polynomial hierarchy

(see [AB09, p. 97-99]). This complexity class is a generalised version of the k = 1 case coined in [PY82]
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in [Hal16a, p. 97-103], it is possible to extend HP-15 in a similar fashion. Apart from
the HP-definition, there are other definitions that use causal models and incorporate
some notion of normality. In [BS17] the definitions HmM and MbM can be found. The first
one is called Hitchcock-meets-Menzies and is a modified version of a definition found
in [Hit07a]. It incorporates normality assumptions by simply partitioning the range of
each variable in a causal model into default and deviant values. The second one is called
Menzies-by-Menzies, it builds on the ideas proposed in [M+07] and requires one to rank
the possible states of the world based on their normality. Hence, this approach can be
seen as being similar to HP-05d.

Another extension of HP-05 can be found in [FG17], where they generalise HP-05,
which is solely concerned with deterministic cases, to the probabilistic case. While not
demonstrated in the article in question, they conjecture that their natural probabilistic
extension is set up to deal with a wide range of examples circulating in the literature.
Furthermore, they claim that they improved upon a previous attempt by [TK11] where
they tried to generalise causal models to the probabilistic level using “Probabilistic Active
Paths”, thus their approach is abbreviated here with PAP.

Lastly, there exists a definition that, while relying on some CM-variant diverges from
the HP-family, by incorporating time into their token causal definition. That is, BV-CM
proposed in [BV18], distinguishes itself by extending causal models with a timing function.
Thereby, allowing it to deal with a large range of controversial examples with time-critical
scenarios. Moreover, rather than just building on the HP-definitions, this approach builds
heavily on Hall’s separation of causality into production and counterfactual dependence.
From there they construct their definition according to a collection of necessary and
sufficient conditions that are allegedly inherent to causation and are derived from common
examples found in the literature.

Before discussing definitions that use languages other than causal models, it must be
noted that there are additional, but rather rudimentary definitions of token causality.
For reference see [HH11], [HH15], [Sch16] and [Wes15].

3.2.2 Definitions based on other Formal Languages
Among those token causality definitions that do not utilise causal models, there exists
one block of formalisms using some kind of action language and another one that utilises
languages from the CP-Logic family. Apart from that, there are two additional formal
definitions and a multitude of (semi-)formal definitions.

Starting with the definitions that utilise action languages. In particular, there are two
equivalent definitions, SC-ACC and SC-CF introduced in [BS18] and [KS20], that leverage
the expressive capabilities of SC. Hence, both of them approach causality from a more
procedural point of view. Their method for detecting token causes uses achievement
causal chains, which can be roughly understood as a specially curated sequence of actions.
Among the publications in set F this definition is one of the few that can identify causes
expressed in first-order logic, as many of the other approaches are, as of now, bound to
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propositional level with no natural path for generalisation in sight, e.g. causal models. In
[KS20] the authors introduce a revised definition that is not only built in the shadows of
the counterfactual tradition but also capable of illustrating some of the accounts found in
the regularity tradition. The approach presented in [LBV19], which shall be abbreviated
with AT uses the action language AL and is therefore related to the situation calculus
approaches. However, when contrasted against those, AL is, according to [LBV19],
not only better equipped for representing indirect effects, but also commands a simple
semantic.

Within the family of CP-Logic there are four definitions to be found. The first, called
BV-11, one is formulated using CP and was defined in [Ven11]. Later the same authors
presented a modified version of said definition in [BV12]. It is referenced here as BV-12.
Those two definitions take an inherent probabilistic view on causation. Moreover, given
the semantics of CP it can be argued that those definitions contain a procedural element
as well. Akin to the definitions from Halpern and Pearl they later extended BV-12 by
introducing normality, creating HH-CP in the process. Moving away from a probabilistic
conception of causality, and more towards a process-orientated view. Another definition
in the wider context of CP-Logic can be found in [DBV18, DBV19], their definition is
according to its creators constructed with a regularity theoretical perspective in mind
and is formulated using CP2. Since they call the semantic underpinning their approach
the possible causal process semantics, their definition will be abbreviated with PCPS.

The definitions BCI formulated in [Boc18a] and BReg originating in [Bau13] rely on
neither of the above mentioned modelling language families. Firstly, with BCI, Bochman
coined a definition emerging out of the regularity theoretic tradition that uses two
separate logics, namely causal theories introduced in [MT+97] and his logic of causal rules
introduced in [Boc04]. The latter language has close ties with the strongest input-output
logic presented in [MvdT00b]. Bochman heavily emphasises that his approach is a
regularity theoretic alternative to the counterfactual causal model approach. However,
both the token causality definition, as well as the similarity to the input-output logic,
suggest that his approach is closer tied to the counterfactual tradition that advertised.
This is in stark contrast with BReg. Rather than relying on a specialised language
with a complicated and heavy semantic machinery, Baumgartner took great effort in
requiring only fairly common logical concepts. That is, his definition, which follows the
regularity tradition, relies only on material implication and some minimality constraint,
thus allowing him to construct his definition using only a slightly extended version
first-order logic.

Before moving on to the more informal definitions, there are some that are difficult to
place. Among the publications in the F those definitions are primarily discussed in
[BV16]. All three of which were put forward by Hall, one termed Hall-07 was coined
in [Hal07] and the other two, called here Hall-04p and Hall-04d, are taken from
[Hal04]. Those definitions were originally defined using neuron diagrams and structural
equations. The two latter definitions reflect Hall’s view in [Hal04] that causality can be
separated into different relations, namely production and dependence.
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3.2.3 Definitions based on Informal Languages
There are some definitions of token causality that are not completely formalised. Starting
with the definition provided in [LSW19a], using the language FCA, it is categorised by
its authors as semi-formal. Their definition called causal argument evaluation criteria
or CAEC is strongly inspired by the NESS account. Moving fully into the informal
realm, arguably the simplest definition in this category is the But-For or sine qua
non test. Heavily used in the legal profession, it captures a highly simplified form of
counterfactual reasoning. An improvement on the but-for test is the definition of Hart and
Honore’s called causally relevant factors, here abbreviated with CRF, which according to
[WG17] has its origins in [HH59]. Later on, John Mackie introduced the so-called INUS-
condition (Insufficient but Necessary part of an Unnecessary but Sufficient condition)
in [Mac65]. Wright, inspired by both of those accounts, formulates his NESS-account
(Necessary Element of a Sufficient Set) in [Wri87]. The latter two are both considered to
be contributions to the regularity theoretic literature [Bau13].

Lastly the definition from [BVKPV10]. It exists at the intersection of logic and law and
is formulated using CAR. The core idea is to check whether a given story (a chronological
sequence of events) explains a designated set of propositions using the provided abductive
causal theory. Then they use an abstract argumentation framework to rank the stories
based on their compliance with evidence. It was not considered a token causality definition,
as it is not intended for extracting causally significant events from the given story.

3.2.4 Categorisation
Here the definitions found in F are ranked based on their popularity. Moreover, they
are categorised based on the languages used and based on their view on causality. For a
quick overview consult Table 3.6, which summarised this subsection.

The popularity of a definition is determined by counting how many publications in F
are mentioning the definition in question. To that extend Table 3.3 and Table 3.4 were
constructed. Those tables depict which publication from F mentions which definition.

It is safe to say that HP-05, which is mentioned by 15 publications, is the most popular
of the considered formalism by a considerable margin. The distant second place with 4
mentions is taken by an extension of HP-05, namely HP-05d. The third most popular
definition is yet another one from Halpern and Pearl, i.e. HP-01. Making the dominance
of Halpern’s ideas throughout the field quite apparent. However, on closer look this
assessment may change slightly. It is clear that this assessment favours old formalisms
that were consistently discussed, investigated and refined. Since this could be (and
most likely is) done by the same author one can recalculate this ranking while ignoring
self-references. When corrected for this, i.e. when considering publications from other
authors only, HP-05 is still referenced 11 times. However, the second place with 2
references is now shared by HP-15, Wood-03 and Hitch-01.

The definitions can also be differentiated based on the original language used to formulate
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them. The data collected to do so can be viewed in Table 3.5. Here, it must be remarked
that the depicted data are already aggregated based on language families. That is, rather
than listing every variant in a particular language family, the family itself is used in the
categorisation process. In particular, this affects definitions using one of the CP-Logics,
and definitions using one of the many variants of causal models. A mere glance at the
table suffices, to further strengthen the claim that the ideas put forward by Halpern
and Pearl shape the literature around causality. Namely, a total of 16 definitions rely
on causal models in one form or another. Removing all definitions formulated by either
Halpern or Pearl, still provides us with a total of 12 definitions. This is in stark contrast
with the second most popular modelling language family, CP-Logic. This language is
only used by four definitions, all of which were either formulated by its creator. Among
those languages with zero definitions under their belt, particular mention must be given
to neuron diagrams. Firstly, although no definition found in F uses this language, it is
often applied as a modelling tool for conveying the type causal relations of an example in
an intuitive manner. Secondly, [EW10] formulated a definition for token causes using
neuron diagrams, which was not captured by the outlined methodology.

Within the language families, the definitions can be distinguished further. In the CP-Logic
family, BV-11, BV-12 use the original formulation, HH-CP uses a slight extension of
the original language that allows for the expression of norms and PCPS relies on the
deterministic second language in this family. With respect to causal models the following
differentiations can be made. HP-05d, MbM (and arguably HP-15 as it can be extended
to a definition that incorporates normality) rely on causal models extended by a normality
ranking. HmM used causal models where variables have default values. Both PAP and
HP-05p use some form of probabilistic causal models and BV-CM require their causal
models to be extended by a timing function.

Finally, Table 3.6 provides a summary of the token causal definition discussed in this
section. Additionally, it provides information about their age and provides a reference
to the publication of origin (if available). Moreover, this table roughly categorises the
discussed definitions based on their philosophical approaches, i.e. counterfactual, process
orientated, probabilistic or regularity, in a rather naive and admittedly simplistic manner.
That is, if a definition heavily relies on interventions or hypothetical statements, then it
will be considered part counterfactual approach; if a definition views causal dependencies
from a production point of view, i.e. an effect produced by a process triggered by its cause,
or if it heavily emphasises time, then it will be considered part of the process-orientated
approach; if a definition relies on probabilistic causal dependence relations to infer token
causes, then it will be considered part of the probabilistic approach; if a definition uses
some form of default reasoning, in particular if based on normality assertions, then it
will be considered to be a member of the regularity approach. However, a statement by
the author’s of a definition declaring membership to one particular approach, is sufficient
enough to classify a definition according to the authors assessment. As the approaches
are (for the most part) not mutually exclusive, overlapping classification is possible. The
purpose of this classification is to provide the reader with a quick intuition about the
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definition’s capabilities and their tools for capturing token causality.
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Year References Language Approach Origin

But-For ? 4 NL CF ?
CRF 1959 2 NL RE [HH59]
INUS 1965 3 NL RE [Mac65]
NESS 1987 4 NL RE [Wri87]
Hitch-01 2001 2 CM CF [Hit01]
HP-01 2001 3 CM CF [HP05]*
Wood-03 2003 2 CM CF [Woo05]°
Hall-04p 2004 1 ? CF [Hal04]
Hall-04d 2004 1 ? CF [Hal04]
HP-05 2005 15 CM CF [HP05]
Hall-07 2007 1 CM CF [Hal07]
HP-05d 2008 4 CM+N CF,RE [Hal08]
Simple 2010 1 CM CF [GDG+10]
SimpleJ 2010 1 CM CF [GDG+10]
PAP 2011 1 CM+P2 CF, PR [TK11]
BV-11 2011 1 CP CF, PR [Ven11]
BV-12 2012 1 CP CF, PR [BV12]
BReg 2013 1 FOL+ RE [Bau13]
PTC 2015 1 CM CF,RE [Wes15]
HP-15 2015 2 CM CF [Hal15a]
HH-CP 2016 1 CP+N CF, PR, RE [BV16]
HP-05c 2017 1 CM CF [FG17]
HP-05p 2017 1 CM+P CF, PR [FG17]
HmM 2017 1 CM+D CF, RE [BS17]
MbM 2017 1 CM+N2 CF, RE [BS17]
BV-CM 2018 1 CM+T CF, PO [BV18]
BCI 2018 2 CT RE (, CF) [Boc18a]
SC-ACC 2018 1 SC PO [BS18]
PCPS 2018 2 CP2 PO, RE [DBV18]
AT 2019 1 AT PO [LBV19]
SC-CF 2020 1 SC CF, PO [KS20]
CAEC 2020 2 FCA RE [LSW20]

Table 3.6: Summary of the token causality definitions discussed. The approaches
considered are the Counterfactual approach (CF); a Process Oriented approach (PO);
the Regularity Theoretic approach (RE); a (explicit) Probabilistic approach (PR). (*:
Original in 2001; °: Original in 2003)
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3.3 Token Causality: Benchmarks
The repeated attempts to formally capture token causality, not only produced a diversity
of definitions and languages, but also a set of examples designed to benchmark the
capabilities of token causal definitions. Those examples, increasingly complex, attempt to
capture fragments of causality, as intuitively understood by humans. With many authors
proposing new examples to highlight shortcomings of previously established formalisms,
the literature concerning causation has amassed a wealth of such examples. Hence, this
section shall provide an overview over some of the most prominent examples.

The first subsection will provide a quick overview of the Benchmarks highlighted in
this section. Moreover, it will introduce a graphical language for encoding simple
causal relations, called neuron diagrams. This language will be used in the subsequent
subsections to highlight the structure of the causal relations within each example. The
Sections 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6, 3.3.7 & 3.3.8 all introduce scenarios that are
commonly used to benchmark new token causality definitions. The intended purpose
of those section is to provide an overview of the common examples and difficult edge
cases found in the literature, as well as the discussion surrounding them. By contrast
Section 4.2 will use the presented Benchmarks to compare a selection of token causality
definitions. This section concludes by presenting some less prominent examples, which
nevertheless highlight important aspects of causality.

3.3.1 Overview and Preliminaries
The literature is full of examples used to benchmark token causal definition, however,
there is a small set of prominent examples, against which most definitions are tested.
Those examples, capture aspects of causations, that seem to be relatively fundamental or
particularly difficult to capture formally. In some cases, the difficulty can be attributed
to the fact that there does not seem to be a consensus on what the correct intuitive
answer to the questions raised by those examples might be. Some of those prominent
examples are concerned with the following scenarios:

• Symmetric Overdetermination, which refers to the scenario where multiple processes,
all of which producing the same outcome, terminate at the same time. It is discussed
in Section 3.3.2 and will be represented by the Benchmark 3.3.1.

• Switch, which refers to the scenario where there exists an event that triggers one
of two processes both of which have the same outcome, thus making the event
immaterial for the outcome of the scenario. It is discussed in Section 3.3.3 and will
be represented by the Benchmark 3.3.2.

• Late Preemption, which refers to the scenario where there are two causal processes
running in parallel, both would produce the same outcome, but one process termi-
nates before the other does. Thereby, bringing forth the outcome and rendering the
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second process irrelevant. It is discussed in Section 3.3.4 and will be represented
by the Benchmark 3.3.3.

• Early Preemption, which refers to the scenario where there are two causal processes,
both would produce the same outcome, but one process terminates before the
other can even start. It is discussed in Section 3.3.5 and will be represented by the
Benchmark 3.3.4.

• Double Preemption, which refers to the scenario where a process that would have
prevented another process, was prevented by an entirely different process itself. It
is discussed in Section 3.3.6 and will be represented by the Benchmark 3.3.5.

• Bogus Preemption, which refers to the scenario where an action is taken to interrupt
an inactive process. It is discussed in Section 3.3.7 and will be represented by the
Benchmark 3.3.6.

• Short Circuit, which refers to the scenario where an action is taken to prevent an
inactive process, however, this triggers the process in the first place, which then has
no effect because the original action prevents it from terminating. It is discussed in
Section 3.3.8 and will be represented by the Benchmark 3.3.7.

Those Benchmarks were chosen based on how frequently they were discussed in the
surveyed literature. Moreover, Table 3.7 provides an overview of which publication
discusses which example. Hence, it not only allows one to gauge the popularity of each
Benchmark, but also serves as a single point of reference for pointers into the literature.

Lastly, even among the less prominent examples, there are some that highlight questions
that are important for formalising causality. For example, how to deal with two causal
processes of different “strength”; can an omission be a cause; what constitutes as the
same event; is there a size limit on a causally connected chain of events; does causality
satisfy transitivity; is causality contrastive, i.e. given a situation, finding the cause of
some event always requires another situation to contrast the original situation against;
how do norms, normality and the attribution of guilt interplay with causality. Hence,
such examples will be discussed briefly in Section 3.3.9.

Neuron Diagrams

As this chapter restricts itself to providing an overview of and the intuition behind
the common examples in the literature, it is important to select a language that can
convey the causal structure discussed in the examples in an intuitive manner. Given
their simplicity and their graphical nature the language of neuron diagrams was selected
for this task. Hence, the following introduces a slightly altered form of neuron diagrams
found in the literature. However, the basic template is taken from [EW10].

A neuron diagram is similar to a labelled directed acyclic graph, where the vertices
represent neurons. Every neuron is associated/labelled with a variable. An exogenous
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neuron is a neuron with no incoming edges (A), while an endogenous neuron must have
at least one incoming edge (B).

A B

A neuron can be either active or not. If a neuron is active, it will be coloured grey (A).
By default, all endogenous neurons are considered to be inactive (B). Whereas, the value
of exogenous neurons is provided by the context of the situation.

A B

Every endogenous neuron has a trigger threshold that indicates how many signals are
required for the neuron to activate. An endogenous neuron with a single border requires
a single signal (A), an endogenous neuron with a double border requires two signals (B),
and an endogenous neuron with higher inertia has a double border and is annotated with
a number (C).

A B C
n

There are three kinds of relations. Firstly, stimulating edges, indicated by an arrow head,
stimulate the target neuron, if the source neuron is active.

A B C

Secondly, inhibiting edges, indicated by a circle, prevent the target neuron to fire, if the
source neuron is active.

A B C

Thirdly, negating edges, indicated by a square, stimulate the target neuron, if the source
neuron is not active.

A B C
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The most unorthodox choice made, was to add the negating edge to the language. While
not necessary, it allows for cleaner modelling of some examples discussed in this section.
To get accustomed to this informal definition consider Example 3.3.1.

Example 3.3.1. In neuron diagram depicted below, U is an exogenous neuron, while all
others are endogenous. A and B fire on a single stimulus, C requires two and D needs 3
stimuli. Since U is active and is connected to A through a stimulating edge A receives
a single stimulus, which in this case is sufficient for A to fire. Even though B received
a stimulus from U it cannot be active, because it is connected to A via an inhibiting
edge. C is active because it receives one stimulus from A and another from B, as it is
connected via a stimulating edge to the former and a negating one to the latter. Finally,
with U and C being the only stimulants for D the necessary threshold is not reached.
Hence, D is not active.

U

A

B C

D
3

It may be of interest that [EW10] properly formalised (and generalised) neuron diagrams.
To do so, they distinguished between neuron graphs capturing an abstract neuron
structure and neuron diagrams representing the execution of neuron graphs for some set
of inputs. This formalisation is of note, as it was used in [EW10] to create of yet another
definition of token causality, which unfortunately was not captured by the outlined
methodology (see Chapter 2).

3.3.2 Symmetric Overdetermination

Symmetric Overdetermination refers to the scenario, where multiple processes, all of
which producing the same outcome, terminate at the same time. This is captured
by the seemingly canonical situation presented in Benchmark 3.3.1, variants of which
are discussed in [GDG+10, HH11, Bau13, HH15, Wes15, BS17, WG17, Boc18a, BV18,
DBV18, BS18, DBV19, LSW20].

Benchmark 3.3.1. Alice (AF ) and Bob (BF ) each fire a bullet at a window, simulta-
neously striking the window, shattering it (WS). What caused the window to shatter?
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AF

BF

WS

This example is sometimes presented in an expanded form, which can be found in
[GDG+10, CFKL15].

Example 3.3.2. Alice (AF ), Bob (BF ), Carol (CF ), Dave (DF ) and Eve (EF ) all fire
at a window. The window shatters after three hits (WS). What is the cause of the
window shattering?

EF

DF

CF

BF

AF

WS

3

For scenarios of that kind it seems as if there does not exist a consensus on what a token
cause should be [Hid05]. That is, it is unclear whether AF or BF individually should
be considered a cause, whether the conjunct of AF and BF is the sole cause of WS or
whether it is actually the disjunct that is the cause of WS.

The issue relates to a discussion about contributing causes, the intuition behind which is
captured by the following story.

Example 3.3.3. Alice fills a sink with water. At each time interval Alice adds another
drop of water. At one point the sink overflows. What caused the sink to overflow, was it
only the last droplet or did the remaining droplets contribute to the outcome.

In Benchmark 3.3.1 if one allows for contributing causes then AF and BF individually
could be considered as parts of the cause AF ∧BF , but not causes themselves. Because
intervening on a single variable does not prevent WS. Mirroring this [BV18] argue that
while WS is not dependent on either AF and BF , both contribute to WS and thus
both should be considered a contributing cause. Their definition, i.e. PCPS differentiates
between counterfactually irrelevant and strongly counterfactually irrelevant variables. In
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their view strongly counterfactually irrelevant variables should not be considered causes,
while counterfactually irrelevant could still be considered causes. In this case, AF and
BF are such counterfactually irrelevant variables.
To conclude, given the story presented in Benchmark 3.3.1 HP-05, PTC, BV-CM, BCI
and PCPS claim that AF and BF individually are considered to be the cause of WS
[BV18, Boc18a, DBV18, Wes15, Hal16a]. Moreover, Benchmark 3.3.1 reveals differences
between Halpern’s definitions. That is, HP-05 considers AF and BF as the sole cause of
WS, while HP-15 only considers the conjunct AF ∧BF as the cause of WS. Moreover,
both HP-05 and HP-15 consider AF ∨BF to be a cause.

3.3.3 Switch
A Switch scenario seems to be characterised as follows. There is a variable representing
some form of action, e.g. the flicking of a switch, irrespective of the variable’s value a
causal process is triggered. Each of those processes produce the same outcome. Hence,
the original action was immaterial in the occurrence of said outcome. For the binary
case, this effect can be observed in Benchmark 3.3.2, variants of which can be found in
[GDG+10, HH11, Bau13, Wes15, Boc18a, BV18, DBV18, BS18, DBV19].

Benchmark 3.3.2. Alice flicks a switch (AF ). The train travels on track A (TA),
otherwise the train would have travelled on track B (TB). In both cases the train arrives
at its destination (TD). Was AF the cause of TD?

AF

TA

TB

TD

With the flicking of the switch being immaterial, [BV18] postulates that most people would
reject calling AF a cause of TD. Although this view is not uncontroversial, especially as
embracing this intuition requires one to accept that causation is not transitive, i.e. it is
clear that AF is the cause of TA, and TA is the cause for TD, yet AF would not be the
cause of TD.
Moreover, the formalisation presented in Benchmark 3.3.2 is also subject of contention.
That is, [HH11] suggest, that rephrasing the scenario in such a way that the variables
TA and TB indicate whether the respective track is blocked or not, provides a more
holistic model.

Example 3.3.4. Alice flicks a switch (AF ). The train travels on track A (TA), otherwise
the train would have travelled on track B (TB). Assuming that neither trackA (BA)
nor track B (BB) are blocked, the train arrives at its destination (TD) in either of the
two cases. Was AF the cause of TD?

69



3. Formalising Causation: A Survey

Another example of Switch which has an arguably less clear “solution”, was discussed in
[Wes15, Boc18a].

Example 3.3.5. Alice pushes Bob. Therefore, Bob is hit by a truck. Bob dies. Otherwise,
Bob would have been hit by a bus, which would have killed him as well.

In Example 3.3.5 one is clearly faced with an instance of Switch. However, [McD95]
claims that intuition would dictate that Alice did in fact kill Bob. [Wes15] argues that
this intuition is a product of a hidden assumption, namely the hope there would be
another option, like “Push Bob to safety”. He therefore, claims that Example 3.3.5 is
underspecified and would suggest declaring the available options as exhaustive within
the model. That is, once the existence of any other unspecified option is excluded, AF
should indeed be rejected as a cause. However, as long as there are other possibilities,
AF could still be considered a cause.

To conclude, given the story of Benchmark 3.3.2, the definitions HP-01 and HP-05 claim
AF to be the cause of TD. While the definitions PTC, BV-CM, BCI, SC-ACC, SC-CF,
HP-15 and PCPS, do not [BV18, Boc18a, DBV18, Wes15, Hal15a, BS18]. However,
appeals to normality, can in some instances alleviate the deficits of HP-01 and HP-05.

3.3.4 Late Preemption

Late Preemption, is quite similar to Symmetric Overdetermination, so much so that is
sometimes referred to as Asymmetric Overdetermination [EW10]. They differentiate
themselves, based on the fact that in Late Preemption the two running processes are not
temporally aligned. That is, Late Preemption is a situation where two causal processes
are running in parallel, both would produce the same outcome, but one process terminates
before the other does. Thereby, bringing forth the outcome and rendering the second
process irrelevant [BV18].

Benchmark 3.3.3. Alice (AF ) and Bob (BF ) each fire a bullet at a window. Alice’s
bullet hits the window first (AH). The window shatters (WS). Bob’s bullet arrives
second and does not hit the window (BH). What caused the window to shatter?

AF

BF

AH

BH

WS
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There seems to be consensus on what the intuitive answer to the question should be.
Namely, AF is the cause of WS. As clearly Alice’s bullet prevents Bob’s bullet to hit
the window, by hitting it earlier. Hence, BF cannot be a cause of WS.

The addition of the variables AH and BH are vital, as their omission would produce an
instance of Symmetric Overdetermination [HH11]. As observed by [BV18] the variable
encoding Bob’s failure of hitting the window, merely hides the fact that Bob was too late.
That is, the addition of AH and BH simply hide the temporal aspect of the story, by
implicitly encoding the order at which the bullets would hit the window, without explicitly
engaging with time. In particular, [BV18] criticise this formalisation on the grounds
that AF and BF trigger entirely different mechanisms. Hence, constructing a model
that incorporates such a relationship is conceptually wrong. Favouring an alternative
approach similar to the one suggested in [Hal16a, p. 34], where they encode temporal
information into the model by introducing time-indexed variables.

In contrast to most other versions of Late Preemption, [Bau13] introduces a slightly
different example of Late Preemption, which is included here for the sake of completeness.
This example in particular is relatively unique, as it is one of the few that actually
introduces a cyclic dependency between variables.

A B C

D E F

To conclude, the accounts HP-05, HP-15, PTC, BV-CM, BCI, SC-ACC, SC-CF and PCPS
satisfy the provided intuition for the story presented in Benchmark 3.3.3. [BV18, Boc18a,
DBV18, Wes15, KS20, Hal16a, p. 33]

3.3.5 Early Preemption
Early Preemption refers to the scenario where there are two causal processes, both would
produce the same outcome, but one process terminates before the other can even start.
This is often captured by making the second process dependent on the first process. It is
different to Late Preemption because the outcome of the two processes occurred before
the second process was set in motion [BV18]. An alternative description, claims that
the characteristic feature of Early Preemption is that the process in question is actually
interrupted by another process, while in Late Preemption the process is never interrupted,
it simply never has the opportunity to terminate [Bau13].
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Benchmark 3.3.4 seems to describe a canonical scenario for this effect, variants of it can
be found in [Bau13, HH15, Wes15, BV16, BS17, WG17, FG17, Boc18a, BV18, BS18,
DBV19].

Benchmark 3.3.4. (Early Preemption) Alice fires a bullet at the window (AF ). If Alice
hits the window (AH), the window shatters (WS). If Alice does not hit the window,
Bob fires a bullet at the window (BF ), hitting it (BH) leading to its shattering. What
caused the window to shatter?

AF

BF

WS

or a more complex version

AF AH

BF BH

WS

Some authors consider Early and Late Preemption to be the same (or at least similar),
thus they resolve examples discussing Early Preemption in a similar fashion. That is,
AF is attributed to be the cause of WS, while BF is not considered to be a cause of
WS. However, this straightforward analysis is deceptive. [BV18] noticed that Early
Preemption has a close relationship with Switch. Assuming that Alice is certain that
Bob will shoot at the window, if she neglects to do so, is faced with a choice. Either
she shoots the window and it shatters or Bob will shoot at the window, shattering it
in the process. Regardless, the status of the window is independent of her decision. In
fact, Alice can only choose the causal path responsible for shattering the window, i.e. she
can decide the how and not the if. Hence, it is a case of Switch. To further strengthen
the similarity [DBV19] add an additional variable to the model, representing the bullet
leaving the gun. In this case, let it be AH representing that Alice hit the window. This
produces a model that is isomorphic to Benchmark 3.3.2. They claim, not uncontested,
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see [Wes15], that adding this variable should not influence the intuition about the causes
at play.

Some try to appeal to probability in order to explain this discrepancy, i.e. they argue that
it is implicitly assumed that causal process could fail, which subsequently pollutes the
intuition [BV18, Hal07]. To contrast Benchmark 3.3.2 and 3.3.4, one could argue that
people assume that Bob might fail to shatter the window, while the arrival of the train
will always succeed. This view seems to be supported by the fact that if one attaches
probabilities of arrival to the respective railway tracks found in Benchmark 3.3.2, some
causal attribution to the switch event can be made. For example, if on track A the train
has a 99% chance of arrival and on track B the train has a 1% chance, then Alice’s
flicking of the switch contributed to the train’s arrival. How much the possibility of a
process failing, influences human intuition can be observed in Example 3.3.6.

Example 3.3.6 ([BV18]). Suppose Alice reaches out and catches a passing cricket ball.
The next thing on the ball’s trajectory was a solid brick wall. Beyond that there was a
window. Is Alice the cause of the window being intact?

People tend to classify this example as an instance of Switch. That is, catching the ball is
immaterial for the status of the window. Alice merely decides the method of how the ball
is stopped. However, by replacing the wall with another person Bob, this intuition shifts,
declaring Alice’s action to be causal for the well being of the window. The presumption
is that this asymmetry arises due to the fact the prospect of the wall failing to stop
the ball is not taken seriously [BV18, BS17]. Rather than relying on probabilities, this
discrepancy could also be explained by somehow restricting the set of models under
consideration, i.e. the fact that the wall fails to stop the ball, should not be considered
as a possibility. A natural candidate for this task would be an appeal to normality.

Another method of dealing with this issue, is discussed in [DBV19]. They resolve this
issue by distinguishing between enabling and triggering conditions. The former preempts
the causal mechanism if not present, while the latter sets the mechanism in motion.
Considering the discussed cases. Alice’s flicking of the switch would be merely an enabling
condition for the train taking track A or track B. By contrast, Alice’s firing of the bullet
is a triggering condition for the bullet hitting the window.

Example 3.3.7 further highlight the similarities and differences between Switch and Early
Preemption.

Example 3.3.7 ([Wes15]). Two two-state switches are wired to an electrode. The
switches are controlled by A and B respectively, and the electrode is attached to C. A
has the first option to flip her switch. B has the second option to flip her switch. The
electrode is activated and shocks C if both switches are in the same position. B wants to
shock C, and so flips her switch iff A does.

This example shares similarities with Switch and Early Preemption, it can be found in
[Wes15, Boc18a]. While structurally similar to Early Preemption, one could argue that
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the action of A does not trigger the shocking of C and thus it should be considered to
be a case of Switch. That is, A has no choice in the matter, and thus should not be
considered a cause of C.

Furthermore, similar to Late Preemption, [Bau13] attributes Early Preemption a structure
that is (slightly) different to the one presented in Benchmark 3.3.4.

A

B C

D

E

To conclude, the intuition presented in Benchmark 3.3.4 is satisfied by HP-05, HP-15,
PTC, BCI, SC-ACC, SC-CF and PCPS [Boc18a, DBV18, Wes15, BS18]. This result is
intentionally not shared by BV-CM. Because, as eluded to earlier, [BV18] understands the
usual formalisation of this example as Switch. Hence, BV-CM does not declare AF to be
the cause of WS. However, by properly extending the model with variables representing
the accuracy of either Alice or Bob, AF becomes a cause. In the case of BCI, Alice is
not only the cause of the window’s shattering when she fires her bullet, but also when
she does not.

3.3.6 Double Preemption

One speaks of Double Preemption if a process that would have prevented another process,
was prevented by an entirely different process itself. Put differently, there are three active
processes A, B, and C. Process C prevents process B from terminating and process B
prevents process A from terminating. Since all three processes are active, process B is
stopped from stopping process A, because process C is active, thus process A terminates
unencumbered. That is, the potential preempter is preempted [DBV19]. Variants of
Benchmark 3.3.5 can be found in [GDG+10, BV18, DBV18, DBV19].

Benchmark 3.3.5. Alice intends to fire a bullet at a window (AI). Bob intends to
prevent Alice from hitting the window (BI). Bob tries to stop Alice (BSA). Bob is
stopped by Carol (CSB). Alice fires a bullet (AF ), hits the window (AH) and shatters
it (WS). The window shatters (WS). What caused the window to shatter?
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CI BI AI

CSB BSA AF WS

According to [Hal16a, p. 35], the intuition for this example is to attribute not only AI,
but also CSB with being the causes of WS.

However, an issue arises in the case where Bob never intends to stop Alice, i.e. where
BI never fires. Here intuition would dictate that CSB cannot be a cause of WS. This
slight change of context produces counterintuitive inferences in some formalisms. Halpern
suggests that this issue is the result of a too simplistic model. That is, Carol can only
stop Bob, if Bob actually tries to stop Alice, a causal dependence is clearly not present
in the model of Benchmark 3.3.5. A model including such a dependency can be seen in
Example 3.3.8 [Hal16a, p. 36].

Example 3.3.8. Reformulation of Benchmark 3.3.5

CI BI AI

CSB BSA AF WS

[DBV18] extend the causal chain by adding a fourth party preventing Carol from stopping
Bob, thereby creating Triple Preemption.

To conclude, in Benchmark 3.3.5 HP-05 and HP-15 deem AI and CSB to be the cause
of WS. By contrast, PCPS does not consider CSB to be the cause of WS. However,
they argue that their definition can easily be adapted into a state of compliance with
Halpern’s proposed intuition [DBV19, Hal16a, p. 36].

3.3.7 Bogus Preemption
Bogus Preemption occurs when an action is taken to interrupt an inactive process.
Meaning the prevention is completely redundant, and therefore irrelevant for the outcome.
Examples discussing Bogus Preemption can be found in [HH11, Bau13, HH15, Wes15,
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CFKL15, BS17, Boc18a, BV18, DBV18, DBV19]. The canonical example, called “Careful
Antidote”, revolves around poisoned water.

Example 3.3.9. Alice is in possession of a lethal poison, but has a last-minute change
of heart and refrains from putting it in Carol’s water (A - A is true if Alice does not
poison the water). Bob puts antidote in the water (B), which would have neutralized
the poison. Carol drinks the water and survives (C - C is true if Carol survives).

B

A

C

The formalisation in Example 3.3.9 is used to demonstrate the limitation of structural
equations, because in the structural equation framework this example is isomorphic to the
example of Symmetric Overdetermination, while at the same time the intuition underlying
both phenomena are vastly different. That is, Carol only dies if both Alice poisons the
water and if Bob fails to add the antidote. Hence, C is only inactive, if both A and B
are as well. Therefore, one is confronted with Symmetric Overdetermination scenario,
indicating that A and B or their conjunct should be considered a cause of C. Yet, in the
context of the given story, the supposed intuition dictates that neither A nor B should
be considered a cause. [Bau13] elegantly observes that Symmetric Overdetermination
discusses the overdetermination of occurrences, while Bogus Preemption is concerned
with overdetermined absence [HH11, Wes15, HH15].

One suggested solution to this problem is to appeal to some notion of normality. That is,
in addition to formalising the causal structure, it is necessary to provide the inference
system with a theory of normality. The idea behind this approach is that one can use the
notion of normality to exclude certain unreasonable contingencies. In this particular case,
one could add a statement “Typically, people do not put poison in the water.” to the
model. Thus, the scenario where Alice actually poisons the water is less “normal” than
the actual scenario. Hence, given this normality assumption, one can classify Bob’s action
as completely redundant. Thereby, excluding it from being a cause. [HH11, HH15].

Another suggestion to resolve this issue is to adapt the model used to represent the
scenario. For example, the suitability of the presented model is directly criticised in
[BS17], where it is called it impoverish. To rectify this [BS17] suggest the inclusion of
a variable indicating the toxicity of the water. [HH15] notes, that such an extension is
arguably more preferable than introducing normality. While not explicitly criticising the
approach from Example 3.3.9, another frequent formalisation extends the model by a
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variable encoding the drinking of the water. The former is also found in [Boc18a, HH15],
the latter is discussed in [DBV18, DBV19] and a combination of both can be found in
[BV18]. Being the most detailed, a variant of the last is presented in Benchmark 3.3.6.

Benchmark 3.3.6. Alice intents to put lethal poison into Carol’s water. However, Alice
does not put lethal poison into Carol’s water (¬AP ). Bob puts an antidote into Carol’s
water (BA). The water is lethal (L), if the poison is added without the addition of an
antidote. If Carol would consumes the lethal water she would die (CD). Carol consumes
her water (CC). Carol does not die (¬CD).

AP

BA

L

CC

CD

In [Wes15], they use the simplistic formalisation found in Example 3.3.9. Being isomorphic
to Benchmark 3.3.1, their formalism, i.e. PTC, naturally concludes that both AP and BA
causally influence the status of CD. In a formalisation obtained by extending the one
found in Example 3.3.9 with a variable that holds when the poison is neutralised HP-15
does not declare BA to be a cause. However, on the same model, both HP-01 and HP-05
consider AF to be a cause [Hal16a, p. 88]. In [Boc18a] they use yet again a slightly
different formalisation. That is, utilising CT they construct a theory expressing that AP
and not BA causes CD; not AP causes not CD; A and B cause not CD. Using this,
BCI concludes that only the absence of Alice poisoning the water is the cause of Carol’s
survival. In [BV18], they use their timing function to differentiate between AP and BA.
Therefore, if Alice’s actions pre-date Bob’s, then Alice’s decision to refrain from poisoning
the water is deemed to be the cause of Carol’s survival by BV-CM. By contrast, if the order
is reversed, the addition of the antidote would be classified as the cause. Additionally,
if no timing is given this example is treated as a case of Symmetric Overdetermination.
According to [DBV19], adding an antidote does interrupt the mechanism activated by
poisoning the water. However, it is impossible for BA to preempt an inactive mechanism.
Hence, only the refusal of Alice to poison the water should be considered a cause of
Carol’s survival. Their definition, i.e. PCPS, reflects this reasoning.
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3.3.8 Short Circuit

A short circuit scenario refers to a situation where an action is taken to prevent an
inactive process. However, this triggers the process in the first place, which then has no
effect because the original action prevents it from terminating. That is, the prevention
creates its own relevance. Variants of this example, often called “Careful Poisoning”, can
be found in [Bau13, HH15, Wes15, BV18, BS17].

Example 3.3.10. (Careful Poisoning) Alice puts a harmless antidote in Carol’s water
(A). Bob intended to not put poison into the water. Seeing that the water contains an
antidote Bob, adds the poison into the water (B - B holds if Bob does not administer the
poison). This poison is countered by the antidote. Carol drinks the water and survives
(S).

A

B

S

Similarly, to Bogus Preemption this formalisation of the presented story is isomorphic to
the canonical Early Preemption case presented in Benchmark 3.3.4. This would suggest
that adding the antidote to the water caused the survival of Carol. While not entirely
uncontested, intuition would dictate that neither A nor B should be considered a cause
of S [BV18].

The above instance of Short Circuiting is one of the examples referenced when talking
about the limitations of structural equations and the necessity of extending causal models
with some sense of normality ranking. However, [BS17] argue that the quality of the
model is the source of the perceived similarities. They add another variable tracking
the lethality of the water, i.e. is the water neutralised to resolve the issue of diverging
intuitions on equivalent structures (see Example 3.3.11). That is, the original model fails
to represent whether or not the antidote neutralizes the poison.

Example 3.3.11. Alice puts a harmless antidote in Carol’s water (AA). Bob will not
poison the water (BNP ), if and only if Alice does not put the antidote into Carol’s
water The water will be neutralised (WN), if it contains both poison and antidote. Carol
survives (CS), if either the water was neutralised or the water was not poisoned.
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AA

BNP

N

CS

[BV18] takes a different angle. They argue that this issue has its origins in conflating
Early Preemption and Switch. That is, if Alice adds the antidote, then Bob will add
poison to the water, which promptly is neutralised allowing Carol to live on. Otherwise,
Bob will not add poison to the water and Carol will be unscathed. Hence, the actions
of Alice are immaterial to the well-being of Carol. Therefore, this example should be
modelled as an instance of Switch, i.e. Alice merely decides in what way the water remains
neutral. Thereby, realigning structure with intuition.

In [Bau13] another structure is classified under the umbrella of short circuit. Benchmark
3.3.7 labels the structure taken from [Bau13] to operate (roughly) within the narrative
presented in Example 3.3.10.

Benchmark 3.3.7. Carol is alive (CA). Alice puts a harmless antidote in Carol’s water
(AA). Adding antidote to the water, protects it against poison (WS - “water save”).
If Alice puts the antidote into Carol’s water, Bob will poison the water (BP ) Adding
poison to an unprotected water makes it toxic (WT ). If Carol would drink toxic water
she would die (i.e. inhibiting CS). Carol consumes her water and survives (CS).

CA

AA

BP

WS

WT

CS

To conclude, given the formalisation found in Example 3.3.10 both HP-05 and HP-15
declare the addition of the antidote to be the cause of Carol’s survival [Hal16a, p. 90].
The definition PTC arrives at the same conclusion [Wes15]. As already mentioned in
[BV18], Example 3.3.10 is deemed to be a variant of Switch. Therefore, their formalism,
i.e. BV-CM, is constructed in such a manner that adding the antidote is immaterial for
Carol’s survival.
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3.3.9 Other Examples
The examples presented above occurred with the highest frequency in the surveyed
literature. Naturally, there are also some examples that were discussed only sparingly.
This subsection will serve as a quick overview of some interesting but relatively infrequent
examples.

Starting with a simple example, originally given in the context of forest fires which is
frequently used by Halpern, e.g. [HH11, HH15], as a benign introductory example.

Example 3.3.12. Alice (AF ) and Bob (BF ) each fire a bullet at a window, simultane-
ously striking the window. The window only shatters (WS), if it is hit by two bullets.
What caused the window to shatter?

Already in such a small example, it becomes difficult to assess what a token cause should
be. The first possibility would be to consider AF , BF and the conjunct of AF and BF
as causes for WS. The second possibility is the rejection of the conjunct as cause for WS
declaring only AF and BF as such. This can be motivated by the fact that if either AF
or BF would not have occurred, then WS would have failed to happen as well. Hence,
either Alice or Bob could have prevented the window from shattering, i.e. each action was
essential for the outcome. The third possibility contrasts the previous one by declaring
the conjunct as the sole cause of WS. The intuition behind this is that both actions are
necessary for the window to shatter, i.e. both AF or BF must have been true to bring
forth WS [Hal16a, p. 28]. Considering the last two possibilities. The first, essentially
asks the question, what is necessary to prevent WS, whereas the second asks, what is
necessary to bring forth WS.

The next example introduces the notion of trumping. Trumping is similar to Symmetric
Overdetermination, but with the twist that the processes are now ranked. Namely, there
are two processes active A and B, both processes produce the same outcome C. However,
in the case that process A and process B conflict, the outcome of process A will always
dominate.

Example 3.3.13. There are a left and a right window. Alice and Bob both order Carol
to fire at the left window. Carol fires at the left window, shattering it. Commands from
Alice always trump commands form Bob (e.g. if Bob would have ordered to fire at right
window, Carol would still have fired at the left one.). Without a command Carol would
not have fired at all. What caused the left window to shatter?

Example 3.3.13 is a reformulation of the canonical example found in [HH11, Wes15]. Here
intuitions conflict whether one should consider Alice alone, both individually or Alice
and Bob as a conjunction to be the cause of the left window shattering [HH11, Wes15].

Moreover, there is also disagreement on how trumping relates to other problem cases
such as Symmetric Overdetermination and Preemption.

80



3.3. Token Causality: Benchmarks

This scenario presented in Example 3.3.13 clearly shares similarities with both Symmetric
Overdetermination and Late Preemption. That is, similar to Late Preemption Bob’s
command starts a process that is “interrupted” by Alice’s command. However, in this
particular case the given commands are identical and are issued at the exact same
moment, justifying the connection to Symmetric Overdetermination. [Hit11] argues that
this example has far-reaching implications for the taxonomy of redundant causation.
More precisely, he claims that this example cannot be classified as either Symmetric
Overdetermination or Preemption. Hence, contradicting the belief that redundant
causation is characterised by this dichotomy.

Particularly interesting is that in order to relegate the causal attribution in Example
3.3.13 to Alice and Bob alone, one must accept that Carol is void of agency. Essentially
operating as a robot, with no responsibility being attributed to Carol. Such hidden
assumptions, clearly tarnishes the intuitive interpretation of the example. Hence, it is
critical to make such assumptions explicit. This highlights that using such stories, which
are polluted with hidden assumptions, as a foundation for constructing causation may be
problematic.

Causation by omission is the claim that the non-occurrence of an event caused another
event, e.g. ¬A causes B. Example 3.3.14 is commonly used to discuss whether omissions
can be causes or not.

Example 3.3.14 ([HH15]). If there is hot weather, flowers will die. Watering prevents
the flowers to die in hot weather. The neighbour does not water the flowers. The flowers
die. What caused the flowers to die?

Is the demise of the flowers caused by the neighbour’s neglect? While at first glance
intuition would side for “yes”, this question is not as straightforward as it may seem.

Not only does [BS17] claim that causation by omission is one of the open problems in
determining actual causation. It is also the case, that there remains disagreement within
the literature on whether causation by omission should be considered when defining token
causality at all. [HH15] identified four established viewpoints within this debate. The
first dismisses causation by omission, while the second completely embraces it. The third
is positioned somewhere in between, declaring omissions to have some kind of secondary
status. The last argues that it is the normative status of an omission that determines its
causal status, e.g. in Example 3.3.14 the inaction of the neighbour only caused the death
of the flowers, if he had the obligation to do so.

A person inclined to attribute the neighbour’s omission as the cause of the flower’s demise
may have incorporated some implicit assumption into their reasoning process. That is,
the sketched scenario never mentions that the neighbour is obliged to water the flowers,
thereby placing the neighbour on equal footing with any other person on this world. Yet
it seems natural to assume that, the neighbour was responsible to water the flowers.
One suggestion, to ensure this implicit assumption is included, would be to appeal to
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normality. That is, expecting the neighbour to water the flowers is considered less out of
the ordinary than expecting some person on the other side of the world to do so. An
additional benefit of this approach is that it provides sufficient flexibility to accommodate
all the previously listed viewpoints. However, this flexibility can be problematic, as
one has to rank scenarios based on their perceived normality. For example, what if the
neighbour was a gardener, but also is sworn to kill this particular kind of flowers. Is the
scenario now more or less normal? To avoid the reliance on normality, one could require
that all variables used in the model are by default relevant for the scenario. Therefore,
implying that the neighbour has some connection/obligation towards the flowers, by mere
virtue of being considered in the model. Put differently, this would imply that only the
neighbour and no other person is relevant for the status of the flowers [BS17].

Another example of omission is Example 3.3.15 which in some form or another can be
found in [GDG+10, HH11, HH15, BS17].

Example 3.3.15 ([HH11]). Suppose that Billy is hospitalized with a mild illness on
Monday; he is treated and recovers. In the obvious causal model, the doctor’s treatment
is a cause of Billy’s recovery. Moreover, if the doctor does not treat Billy on Monday, then
the doctor’s omission to treat Billy is a cause of Billy’s being sick on Tuesday. But now
suppose that there are 100 doctors in the hospital. Although only doctor 1 is assigned to
Billy (and he forgot to give medication), in principle, any of the other 99 doctors could
have given Billy his medication. Is the nontreatment by doctors 2–100 also a cause of
Billy’s being sick on Tuesday?

Not only does Example 3.3.15 demonstrate the issues with omission, but it also raises
questions about modelling, i.e. what should be included in our models and what does it
mean for something to not be included in the model. Moreover, it further demonstrates
how norms can influence our causal intuition, i.e. because Billy is assigned a specific
doctor, all other doctors are suddenly void of the obligation to help Billy in this regard.

Another example, highlighting norms and expectations and their influence over causal
attribution is Example 3.3.16, which can be found in [BV16, HH15].

Example 3.3.16 ([HH15]). The receptionist in the philosophy department keeps her
desk stocked with pens. The administrative assistants are allowed to take pens, but
faculty members are supposed to buy their own. The administrative assistants typically
do take the pens. Unfortunately, so do the faculty members. The receptionist repeatedly
informed them that only administrative assistants are allowed to take the pens. On
Monday morning, one of the administrative assistants encounters professor Smith walking
past the receptionist’s desk. Both take pens. Later, that day, the receptionist needs to
take an important message...but she has a problem. There are no pens left on her desk.

In this example, intuition would dictate that professor Smith caused the absence of pens.
In [KF08] it was empirically tested and confirmed that this seems to be the judgement
most humans would make.
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An entirely different area of discussion is summarised by Example 3.3.17. It represents
the stream of discussions relating to whether and how one should distinguish between
causes and background conditions.

Example 3.3.17 ([HH15]). Consider a fire that is caused by a lit match. While the fire
would not have occurred without the presence of oxygen in the atmosphere, the oxygen
is deemed to be a background condition, rather than a cause.

Depending on the position taken in this discussion, one would either accept or deny the
presence of oxygen the status of cause [HH15]. Obviously, this relates to the ideas of
causes and contributing causes. To be more precise, while the oxygen contributed to the
fire, it was merely a static precondition, and therefore insufficient of explaining a newly
occurring event, i.e. one cannot explain change with a constant.

Speaking of change Example 3.3.18, taken from [HH11], stirs one directly into a meta-
physical discussion about what an event is. Meaning, if the occurrence of an event is
delayed (even by a tiny amount), is it still the same event. Neglecting this distinction
during the modelling process may result in undesirable results.

Example 3.3.18. Alice plans to go camping in June (AC). If there is a forest fire in
May (FFm), Alice will not go camping. If Alice goes camping, she will cause a forest fire
(FFj).

That is, if one would not have explicitly distinguished between the forest fire in May and
the forest fire in June by using separate variables, the model would contain circularities
and thereby allows for counter-intuitive inferences, such as creating a forest fire in June
causes Alice to go camping [HH11].

Moreover, this further raises the question of whether there can be a restriction on the
distance between cause and effect, e.g. temporal distance. Example 3.3.19 represents a
case where the “cause” is so far removed from the effect, that it is questionable to call
that event a cause in the first place.

Example 3.3.19 ([HH15]). A lit match aboard a ship caused a cask of rum to ignite,
causing the ship to burn, which resulted in a large financial loss by Lloyd’s insurance,
leading to the suicide of a financially ruined insurance executive. The executive’s widow
sued for compensation, and it was ruled that the negligent lighting of the match was not
a cause (in the legally relevant sense) of his death.

The answer to whether the sailor dropping a lit match should be charged with being the
cause of another person’s death is yet again uncertain. Due to its long causal chain, the
cause is so far removed from the effect that intuition would disagree with declaring the
sailor to be a cause. That is, does the causal signal decrease while moving along a causal
chain. This discussion shares some similarities with Minsky’s account of “commonsense”
reasoning in [Min07], where he argues that in contrast to logical reasoning, arguments
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performed using “commonsense” reasoning gradually lose their viability as the argument
chain increases in size. Hence, to ensure that the chain remains intact, additional
arguments, are required to support the whole structure. A similar interpretation may be
apt for causal reasoning as well.

However, another difference to conventional logical reasoning is the issue of transitivity.
As already alluded to in the discussion of Benchmark 3.3.2, causation may not be
transitive. Example 3.3.20 is another scenario that demonstrates that causation seems to
violate transitivity [Hit01]. However, this example has a structure different to Switch
and seems to share a close similarity with short-circuiting.

Example 3.3.20 ([GDG+10]). A boulder slides toward a hiker, who, seeing it, ducks.
The boulder misses him and he survives. Did the boulder sliding cause his survival?

Clearly, intuition would dictate that the boulder is not the cause of the hiker survival.
Yet the boulder caused the hiker to duck and ducking ensured that the hiker survived.
Furthermore, note that this introduces a rather interesting pattern. Namely, the boulder
initiates a process, and active intervention is required to prevent this process from
terminating. That is, we have here a scenario, where a process triggers a process that
prevents its termination, i.e. short-circuiting.

In [BS17] Example 3.3.21 was used to argue that causation should be considered as
contrastive. Meaning it is not a binary, but a tertiary relation, i.e. to identify causes
in a given situation, requires one to contrast the actual situation against another one.
Hence, Example 3.3.21 is designed to induce two different intuitions depending on which
possible scenario is used to counterfactually contrast the actual scenario against [BS17].

Example 3.3.21 ([BS17]). Consider a case where doctor can administer no dose, one
dose, or two doses of medicine to patient. patient will fail to recover if no dose is
administered, but will recover if either one or two doses are administered. Let us suppose
that doctor in fact administers two doses and Patient recovers.

Here in particular, giving the patient two doses rather than zero doses caused the patient
to recover. However, administering two doses rather than one dose did not cause the
patient to recover [BS17].

The last example, Example 3.3.22, is relatively common, being discussed in [Wes15,
CFKL15, Hal16b, Boc18a]. It is of particular relevance, as it was this example that lead
to a reformulation of HP-01. While HP-01 struggled with this example, its successor
HP-05 was able to match the intuitive answer. However, [Hal16b] demonstrated that
with proper modelling HP-01 can achieve the same inferences as HP-05 on this example.

Example 3.3.22 ([Wes15]). A firing squad consists of shooters B and C. It is A’s job
to load B’s gun, C loads and fires his own gun. On a given day, A loads B’s gun. When
the time comes, only C shoots the prisoner.

84



3.3. Token Causality: Benchmarks

Here intuition would dictate that C was the one causing the prisoners death.

This chapter provided a wide overview of the different languages, definitions and bench-
marks found in the causality literature. Moreover, the categorisations provided in this
chapter allows us to intelligently select a few such constructs for a more detailed and
technical investigation, which will be carried out in Chapter 4.
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CHAPTER 4
Comparing recent systems for

token causality

This chapter describes a selection of token causal definitions and their corresponding lan-
guages. To that end, Section 4.1 provides the needed background required to understand
how those definitions perform causal inference. Section 4.2 compares the introduced
formalisms by applying each of them to the benchmarks introduced in Section 3.3.

In order to test the behaviour of a definition on a particular benchmark, we are required
to model the described scenario using the respective languages. However, as discussed
in Section 3.3, even this task is subject of contention. Hence, we tried to ensure that
the respective formalisations are similar in structure. This required us to sometimes
diverge from the formalisations found in the literature, assuming they were discussed
in the first place (see Table 3.7). By following this approach, we could observe that
the discussed definitions exhibited similar behaviour across many benchmarks. This is
particularly true for the older benchmarks, e.g. Symmetric Overdetermination, Late and
Early Preemption. By contrast, we could observe a slightly more diverse set of results on
the newer benchmarks, e.g. Bogus Preemption and Short Circuit.

4.1 Definitions
We discuss the token causality notions from each of the three most popular language
families (see Chapter 3): the one developed in [BV18] which relies on causal models; the
one introduced in [DBV19] which uses CP-Logic; the one discussed in [Boc18a] which
builds on Non-Monotonic Theory. Moreover, due to the influence of its successors we also
discuss the newest theory put forward by Halpern, which was introduced in [Hal15a].

This section unfolds as follows. As each formalism was introduced using a slightly
different notation, first Section 4.1.1 provides a homogenised notation to ensure that
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similar concepts across the various formalisms are expressed in a similar manner. Causal
models (CM) and the modified Halpern and Pearl definition for token causality (HP-15)
are presented in Section 4.1.2. Building on the definition of causal models, Section
4.1.3 will discuss BV-CM, the most recent token causal definition using CM, which was
introduced in [BV18]. Section 4.1.4 presents the latest entry in the CP-Logic family
(CP2) and its corresponding token causality definition PCPS, developed in [DBV19].
Lastly, Bochman’s definition for causal inference (BCI) taken from [Boc18a], and its
corresponding language, non-monotonic causal theories (CT), is introduced in Section
4.1.5.

4.1.1 Notation
By convention, sets will be written using capital letters and are usually referred to
using the symbols X, Y and Z. Variables are written in lower case and are commonly
referenced using the letters u, v, x, y and z. Values of variables are written in lower case
and bold, e.g. given the variable x, x is the value of the variable x. In the binary case,
the variable x can either have the value true or false. Implicitly, true will be treated as
1 and false as 0.

Exogenous variables are variables whose values are determined by factors outside of
the model. Whereas endogenous variables are determined by the values of exogenous
variables using the rules of the modelled system.

Definition 4.1.1. A signature Σ ∶= (U ,V,R) consists of set of exogenous variables U
and a set of endogenous variables V. Let W ∶= U ∪ V. Moreover, R is a function that
specifies the range of each variable in the signature Σ, i.e. ∀x ∈ W R(x) = X for some
non-empty set X.

There are two additional notion of a signature used in this thesis.

Definition 4.1.2. A binary signature Σ ∶= (U ,V) is a signature where each variable is
binary, i.e. ∀x ∈ W R(x) = B. A propositional signature Σ ∶= W is a binary signature
without an endogenous-exogenous variable distinction.

Sometimes it will be assumed that the variables in W adhere to some implicit total
order, i.e. the set W can equally be understood as the tuple w⃗ = (x1, . . . x∣W∣) containing
the elements in W. In a slight abuse of notation this distinction is not made explicit.
For example, for some X ⊆ W and some function f , a statement such at ⨉x∈X f(x) is
essentially ⨉∣W∣i=1∧xi∈X f(xi).
For some signature Σ, let σ be a function assigning a variable some value, i.e. for
x ∈X ⊆ W σ(x) ∈ R(x). If σ is only defined over U , then it will be called context. If it is
defined for all variables in W it will be called an assignment. Moreover, the encoding of
an assignment as a set of literals (in the binary case) is referred to as world, which in a
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slight abuse of notation will also be indicated by σ. That is, σ is a world, if for all x ∈ W
either x ∈ σ or ¬x ∈ σ, but not both.

The symbol L is used to a indicate formal language. Languages are constructed overs
signatures and contain formulas, which are indicated using ϕ, φ and χ. As an example
of such a formal language consider LB, the language of classical propositional logic.

Definition 4.1.3. The language LB can be recursively constructed over a propositional
signature Σ. That is,

• � ∈ LB, ⊺ ∈ LB and Σ ⊆ LB
• if ϕ ∈ LB then ¬ϕ ∈ LB.

• if ϕ, ψ ∈ LB, then for ○ ∈ {∧,∨,→} ϕ ○ ψ ∈ LB.

The term literal in a binary variable context, references either the variable itself or the
negated variable, i.e. for some variable x the literal l is either a positive literal l = x or a
negative literal l = ¬x. In this thesis literals are commonly indicated by the letters l, p
and q, while a set of literals is denoted using L.

The structures used to interpret such languages vary greatly. However to indicate such
structures the symbol I is used. In the case of LB, I = σ. Moreover, for the sake of
completeness consider the following definition of the semantics of propositional logic.

Definition 4.1.4. A sentence ϕ ∈ LB is evaluated under an interpretation I such that

• if ϕ = � then I(�) = false and if ϕ = ⊺ then I(⊺) = true

• if ϕ = ¬ψ then I(¬ψ) = true ⇐⇒ I(ψ) = false

• if ϕ = ψ ∧ χ then I(ψ ∧ χ) =min (I(ψ),I(χ))
• if ϕ = ψ ∨ χ then I(ψ ∨ χ) =max (I(ψ),I(χ))
• if ϕ = ψ → χ then I(ψ → χ) = false ⇐⇒ I(ψ) = true and I(χ) = false

Lastly, the symbol Δ will be used to indicate a set encoding causal relationships, irrespec-
tive of whether it is provided by the model, e.g. causal models, or by a set of formulas,
e.g. Bochman’s causal inference. Moreover, for some (endogenous) variable x, let δx be
the set of causal rules influencing x. If ∣δx∣ = 1 then let δx be the rule itself.
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4.1.2 The modified Halpern and Pearl definition

Here we present HP-15 and CM, unless otherwise specified the definitions are taken from
[Hal15b].

A causal model can be viewed as a tuple consisting of a set of exogenous variables U and
endogenous variables V, where each variable is assigned a range of possible values by
the function R. The former are variables whose values are specified using the context of
the modelled situation. The latter are variables whose values are determined by exactly
one structural equation from the set of structural equations Δ. Such equations are best
understood as assignments, determining the value of an endogenous variable based on
the values of all other variables in the model.

Definition 4.1.5. A causal model I ∶= (Σ, Δ) is a pair, where Σ ∶= (U ,V,R) is a
signature and Δ is a set of modifiable structural equations containing for each variable
x ∈ V a single function δx ∶ ⨉y∈W∖{x}R(y) → R(x).
Usually, the function δx will be expressed using a shorthand notation. That is, for the
causal model I where U ∶= {u} and V ∶= {x, y, y′}, the function δx(y, y′, u) = y + u is
abbreviated as x ∶= y + u. To emphasise that this structural equation is not an equation
in the classical algebraic sense the equation is written as x ∶= y + u, an idea taken from
[Wes15]. In its most general form, a causal model could look as follows.

Example 4.1.1. A simple causal model capturing the fact that firing a bullet at a
window (BF ) causes it to shatter (WS) could take the form I ∶= (Σ, Δ) with Σ ∶=({xBF },{xW S},R) such that R(xBF ) = R(xW S) ∶= {true, false} and with Δ ∶= {xW S ∶=
xBF }. However, in general we are not restricted to such scenarios. For example, if we
would like to model the relationship between altitude (A) and temperature (T ) in a linear
manner, we could choose to do this with the model I ∶= (Σ, Δ) with Σ ∶= ({xA},{xT },R)
and R(xA) = R and R(xT ) = R+ and with Δ ∶= {xT ∶= γ ⋅ xA} where γ is some constant.

When distinguishing between endogenous and exogenous variables, Halpern takes a rather
pragmatic approach and uses a single exogenous variable. The range of this variable is
chosen such that it can encode all possible variable-value combinations. For example, to
encode a set of X variables into a single variable, Halpern compresses those into a tuple
x⃗ ∈ ⨉x∈XR(x)
Emerging out of the counterfactual tradition, it is natural that the language provides
a convenient method to model interventions. Those interventions are akin to asking
questions such as, how the model would change if a certain variable is fixed to a particular
value.

Definition 4.1.6. Let I ∶= (Σ, Δ) be a causal model, then the model Ix∶=x ∶= (Σ, Δx∶=x)
where Δx∶=x is identical to Δ, but for the structural equation of x which is fixed to x ∶= x.
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Multiple interventions at the same time, i.e. Ix1∶=x1⋱xk ∶=xk
for some k ∈ N, will be written

as Ix1∶=x1,...,xk ∶=xk
or if clear from the context it will be abbreviated using vector notationIx⃗∶=x⃗. Δ is treated in analogously.

Example 4.1.2. Consider the causal model of a simple scenario described in [BV18].
This model contains two binary exogenous variables xAF and xBF and one binary
endogenous variable xW S . The value of the endogenous variable is characterised using the
structural equation xW S ∶= xAF . That is, we have the following causal model I ∶= (Σ, Δ)
with Σ ∶= ({xAF , xBF },{xW S},R) and R(xAF ) = R(xBF ) = R(xW S) = {true, false}
and with Δ ∶= {xW S ∶= xAF }. By intervening on xAF and fixing it to false we modify
the equation of xAF which results in the model IxAF ∶=false = (Σ, ΔxAF ∶=false) where
ΔxAF ∶=false = {XAF ∶= false}.
Computing the values of the variables present in a causal model requires context, i.e.
an assignment of values to all exogenous variables. Once such an assignment is given,
the values of the endogenous variables are derived by finding a solution for the set of
structural equations.

Definition 4.1.7. Given a causal model I ∶= (Σ, Δ). Let σ be a setting of the exogenous
variables in I such that for x ∈ U σ(x) ∈ R(x), which is referred to as context. Then(I, σ) is a causal model with context.

Example 4.1.3. Consider the simple window model I ∶= (Σ, Δ) from Example 4.1.2. A
suitable context would be σ ∶= {xAF ↦ true, xBF ↦ false}.
It is in general possible to have cyclic interdependences between variables, the most
discussed subset of causal models has a clear dependence hierarchy that prevents such
cyclic relations and ensures that the values of the variables are uniquely determined by
the context.

Definition 4.1.8. A causal model I is acyclic if there is some total ordering ≺ of
the endogenous variables such that if x ≺ y, then x is independent of y, i.e. ∀y, y′ ∈R(y) δx(. . . , y, . . . ) = δx(. . . , y′, . . . ).
An alternative definition can be found in Halpern’s book [Hal16a] where he defines
recursive and strongly recursive models, with the latter being a special case of the former.

Example 4.1.4. The causal model from Example 4.1.2 is acyclic. By contrast, the
model induced by the set of structural equations Δ ∶= {B ∶= γ ⋅C +A, C ∶= η ⋅B} would
be considered cyclic.

Although most definitions remain the same for cyclic models, unless otherwise specified,
any subsequent reference of causal models refers to acyclic causal models.

Causal models are only concerned with encoding type causal relations among variables.
Hence, in order to express and evaluate causal claims over those structures, including

91



4. Comparing recent systems for token causality

interventions, an appropriate language is required. This language is constructed over a
signature and is essentially an extension of classical propositional logic, allowing one to
query the values of variables and enabling one to express interventions.

Definition 4.1.9. Let Σ ∶= (U ,V,R) then language LCM can be constructed as follows.
Let Lcm ⊆ LCM be recursively defined as:

• x = x ∈ Lcm, with x ∈ V and x ∈ R(x) are referred here as literals (or primitive
events);

• if ϕ ∈ Lcm then ¬ϕ ∈ Lcm;

• if ϕ, ψ ∈ Lcm, then for ○ ∈ {∧,∨,→} ϕ ○ ψ ∈ Lcm.

LCM extends Lcm as follows. For all ϕ ∈ Lcm, one has

• ϕ ∈ LCM and

• [y1 ∶= y1 ∧ ⋅ ⋅ ⋅ ∧ yk ∶= yk]ϕ ∈ LCM
and with y1 ∶= y1, . . . , yk ∶= yk being distinct variables in V and yi ∈ R(yi) for 1 ≤ i ≤ k.
Such a causal formula can be abbreviated as [y⃗ ∶= y⃗]ψ. The conjunct of x1 = x1∧⋅ ⋅ ⋅∧xk =
xk terms is abbreviated in the same manner, i.e. x⃗ = x⃗.

The evaluation of such formulas is done using causal models with context. While the
boolean connectives are interpreted as in classical propositional logic, the semantic of
the additional constructs adhere to the following intuition. Firstly, a literal x = x holds
within a particular causal model with context, if the variable x takes on the value x in
the model. Secondly, an intervention [Y⃗ ∶= y⃗]ψ evaluates to true in a causal model, if the
formula ψ holds in the model obtained by fixing the values of each yi to the respective
value yi.

Definition 4.1.10. Let I be a causal model, let σ be a context for I and let ϕ ∈ LCM.
The relation (I, σ) ⊧ ϕ is defined inductively. For

• ϕ = (x = x), (I, σ) ⊧ ϕ if the variable x has the value x in the unique solution to
the equations in I given the context σ.

• ϕ = ψ ○ χ for ○ ∈ {∧,∨,→} or ϕ = ¬ψ then the truth value of ϕ is obtained as in
classical propositional logic.

• ϕ = [y1 ∶= y1, . . . , yk ∶= yk]ψ then (I, σ) ⊧ ϕ if (Iy1∶=y1,...,yk ∶=yk
, σ) ⊧ ψ.

Example 4.1.5. Consider the window model I ∶= (Σ, Δ) from Example 4.1.2, with the
context σ ∶= {xAF ↦ true, xBF ↦ false}. In this model we have (I, σ) ⊧ xW S = true.
However, (I, σ) /⊧ [xAF ∶= false]xW S because (IxAF ∶=false, σ) ⊧ ¬xW S = false due to then
structural equations xAF ∶= false and xW S ∶= xAF .
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Having defined the components required for both encoding and querying causal relations,
the last remaining step is to introduce Halpern’s modified definition of token causality.

Definition 4.1.11 ([Hal15a]). x⃗ = x⃗ is an actual cause of ϕ in (I, σ) if

AC1: (I, σ) ⊧ (x⃗ = x⃗) and (I, σ) ⊧ ϕ

AC2: There are some variables w⃗ in V and a setting x⃗′ of the variables x⃗ such that if(I, σ) ⊧ (w⃗ = w⃗), then (I, σ) ⊧ [X⃗ ∶= x⃗′, w⃗ ∶= w⃗]¬ϕ.

AC3: x⃗ is minimal, i.e. no strict subset of x⃗ satisfies AC1 and AC2.

The intuition underlying those conditions is the following. AC1, implies that the events(x⃗ = x⃗) cannot be the cause of ϕ, unless both actually happen. AC3, ensures that
superfluous events are not considered as causes. AC2, is by far the most demanding. The
requirement of finding a setting for x⃗ such that ϕ does not hold, is conceptually similar
to a but-for statement, i.e. but for the fact that x⃗ = x⃗, ϕ does not hold. Meaning, in
order for a set of events to be a cause of an event, there must exists an alteration of
those events under which the outcome would have changed. Furthermore, the statement
fixing the values of some set of endogenous variables w⃗ amounts to a less stringent form
of the ceteris paribus test. To summarise, the statements capture something akin to the
following. There exist an intervention on the variables x⃗ and some set of variables w⃗ that
remain fixed to their original values (regardless of the changes made to x⃗) prohibiting
the event ϕ from occurring.

Example 4.1.6. Consider the window model I ∶= (Σ, Δ) from Example 4.1.2, with the
context σ ∶= {xAF ↦ true, xBF ↦ true}. We can deduce that xAF is a cause of xW S , i.e.

• AC1 is satisfied due to (I, σ) ⊧ xAF and (I, σ) ⊧ xW S = true.

• AC2 is satisfied due to (IxAF ∶=false, σ) ⊧ ¬xW S = true.

• AC3 is satisfied because no subset of {xAF } satisfies AC1 and AC2.

Notice that in AC2 the set W is empty. We could have selected W ∶= {xBF }, however,
freezing this variable to the current value is immaterial as it is not affected by the
intervention on xAF .

Lastly, another common restriction is the restriction to boolean variables.

Definition 4.1.12 ([Hal15b]). Let I be a causal model, if ∀x ∈ W R(x) = B then I is a
binary causal model.
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When talking about binary causal models, literals of the form x = x can either be x = true
or x = false, which can be understood as expressing that as an event either happened
or not. Being essentially boolean variables, one can employ the usual notation found
in logic as a shorthand. That is, the former can be abbreviated as x and the latter as¬x. Similarly, an intervention on a causal model I can also be expressed in the same
concise manner, i.e. Ix∶=true is simply Ix and Ix∶=false can be written as I¬x. Moreover,
a structural equation δx determining the value of some endogenous variable x, is in this
setting a simple propositional boolean formula.

This restriction is particularly important for this thesis. Meaning that, henceforth all
causal models are considered to be binary (unless otherwise specified.)

4.1.3 A principled approach to actual causality

Here we present BV-CM and CM+T, unless otherwise specified the definitions are taken
from [BV18].

BV-CM uses the extension of the causal model framework CM+T to define its notion
of token causality. CM+T extends binary CM with an additional timing function. This
function maps literals into the natural numbers, which intuitively can be understood
as arranging events on a timeline. Utilising those models, they define token causality
by extracting a set of principles from examples. Those principles are separated into
necessary and sufficient conditions. The latter essentially provide a lower bound, i.e. any
definition of causality must include the necessary principles, whereas the former represent
an upper bound, i.e. any definition of causality is subsumed by the sufficient principles.

For the final definition of token causality, not all principles are required. However, due
to their perceived value, all principles from [BV18] will be reiterated in this subsection
as well. Furthermore, rather than introducing the language extension upfront, this
subsection follows the structure found in [BV18] and starts by discussing the first two of
the aforementioned principles.

The first principle relies on the notion of counterfactual dependence. That is, the
subsequent definition tries to express that an endogenous literal p is counterfactually
dependent on an endogenous literal q if intervening on the value of q, while holding the
context fixed, results in ¬p.

Definition 4.1.13. Given a causal model with context (I, σ) and two endogenous literals
p and q such that (I, σ) ⊧ p∧ q then p is counterfactually dependent on q if (I¬q, σ) ⊧ ¬p.

Example 4.1.7. Consider the simple window model I ∶= (Σ, Δ) from Example 4.1.2,
with the context σ ∶= {xAF ↦ true, xBF ↦ true}. Because (I, σ) ⊧ xAF ∧ xW S and(I¬xAF

, σ) ⊧ ¬xW S we know that xW S is counterfactually dependent on xAF . By
contrast, although (I, σ) ⊧ xBF ∧ xW S , due to (I¬xBF

, σ) ⊧ xW S we know that xW S is
not counterfactually dependent on xBF .
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[BV18] argues that counterfactual dependence is a sufficient condition for causation and
thus consider it as the first principle of causation.

Definition 4.1.14. Given a causal model with context (I, σ) and two endogenous literals
p and q. If p is counterfactually dependent on q, then q is a cause of p w.r.t. (I, σ).
Next they introduce the notion of contributing cause, which ensures that events that
fail to satisfy dependence, but are somehow responsible for the observed effect, are not
neglected. For example, consider two processes that in conjunction produce an effect, yet
fail to do so independently. Hence, the observed effect is not counterfactually dependent
on either, however, both contributed to its existence. Anyhow, before defining the concept
of contributing cause, a notion of sufficiency is required.

Definition 4.1.15. Given a causal model I, a consistent set of literals L is sufficient for
some literal p, if p = x and (⋀l∈L l) → δx or p = ¬x and (⋀l∈L l) → ¬δx.

That is, a set of literals is sufficient for a positive literal, if its conjunction satisfies the
structural equation determining the value of the variable contained within the literal.
For a negative literal the same holds, but for the fact that the negation of the structural
equation must be satisfied.

Example 4.1.8. Consider the window model I ∶= (Σ, Δ) from Example 4.1.2, with the
context σ ∶= {xAF ↦ true, xBF ↦ true}. The sets {xAF } and {xAF , xBF } are sufficient
for xW S , because xAF ∧ xBF → xAF . By contrast, {xBF } is not.

Having defined the concept of sufficiency, one can now characterise the notion of a direct
possible contributing cause, which is in fact a context independent concept.

Definition 4.1.16. Given a causal model I and two endogenous literals p and q. p is a
direct possible contributing cause of q, if there exists a set of literals L with p ∈ L such
that L is sufficient for q, but L ∖ {p} is not. L is called a witness for p w.r.t. q.

This notion can be generalised, to define indirect contributing causes.

Definition 4.1.17. Given a causal model I and two endogenous literals p and q. p is
a possible contributing cause of q, if there exists a sequence of literals p = l1, . . . , ln = q
such that ∀i ∈ {1, . . . , n − 1} the literal li is a direct possible contributing cause of li+1.

To identify actual possible contributing causes, this definition needs to be context specific.

Definition 4.1.18. Given a causal model with context (I, σ) and two endogenous literals
p and q such that (I, σ) ⊧ p ∧ q then p is a direct actual contributing cause of q, if p is a
direct possible contributing cause of q with a witness L such that (I, σ) ⊧ L.
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Example 4.1.9. Consider the window model I ∶= (Σ, Δ) from Example 4.1.2, with
context σ ∶= {xAF ↦ true, xBF ↦ true}. The literal xAF is a direct possible contributing
cause of xW S , because {xAF } is sufficient for xW S , but ∅ is not. Moreover, it is also a
direct actual contributing cause, as (I, σ) ⊧ xAF ∧ xW S . By contrast, the only sufficient
set for xW S containing xBF is {xAF , xBF }. However, because {xAF } remains to be
sufficient, xBF cannot be a direct possible contributing cause.

As before this generalises to indirect actual contributing causes.

Definition 4.1.19. Given a causal model I and two endogenous literals p and q such
that (I, σ) ⊧ p ∧ q. p is an actual contributing cause of q, if there exists a sequence
of literals p = l1, . . . , ln = q such that ∀i ∈ {1, . . . , n − 1} the literal li is a direct actual
contributing cause of li+1.

Using actual contributing causes, [BV18] finally formulate their second principle, which
is a necessary condition.

Definition 4.1.20. Given a causal model (I, σ) and two endogenous literals p and q. If
p is a cause of q in (I, σ), then p contributes to q w.r.t. (I, σ).
[BV18] postulate that the definition of causality must lie somewhere in between those
two principles. The remaining two principles are used to demonstrate why the principle
of contribution fails to be sufficient for causation. To formulate the third principle the
notion of production has to be introduced. However, to do so one needs to extend the
language CM by an additional timing function thereby creating CM+T.

Definition 4.1.21. A timing τ for a causal model with context (I, σ) is a function
τ ∶ L(I,σ) → N, where L(I,σ) is the set of all literals that hold in (I, σ), i.e. L(I,σ) ∶= {l ∣(I, σ) ⊧ l}.
Intuitively, τ(p) < τ(q) expresses that (the event represented by) the literal p occurred
before (the event represented by) the literal q, while τ(p) = τ(q) implies that both events
occurred simultaneously.

They interpret a positive literal as the occurrence of an event, while a negative literal is
considered to be an omission, i.e. the absence of the event. The omissions in particular,
provide a challenge w.r.t. the timing function, because we are now required to provide
a timestamp for the non-occurrence of an event. They reconcile this issue by declaring
that the point of time for the non-occurrence of an event is the moment in which the last
event occurred that could have produced the event in question. See Definition 4.1.24 for
clarification.

They generalise the notion of a timing function by allowing for partial timings, which
can simplify the modelling process by allowing some events to escape the domain of τ .
This is convenient because not all causal processes require keeping track of the timing.
For example, the relationship between altitude and temperature is time independent.
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Definition 4.1.22. A partial timing τ for a causal model with context (I, σ) is a function
from some subset of the set of all literals L(I,σ) to N. A timing τ ′ extends τ , if for any
literal l ∈ L(I,σ), τ ′(l) = τ(l) whenever τ(l) is defined.

Adding such a new construct, interventions on causal models have to be redefined as
well. Intuitively, an intervention on a timing simply assumes that everything before the
intervention remains the same while everything after the intervention is unknown.

Definition 4.1.23. Given a causal model with context (I, σ), a partial timing τ and
two endogenous literals p and q, such that (I, σ, τ) ⊧ p and p ≠ q, the partial timing τ¬p

is identical to τ up until τ(p) − 1 then τ¬p(¬p) = τ(p) and τ(p) ≤ τ(q), τ is undefined.

The actual semantics of the binary function, as well as what restrictions such a function
must adhere to, is interwoven with the stated principles upon which the token causality
definition rests. One of such restrictions is the notion of being a valid timing for a
particular model. Meaning that, the choice of timing is restricted since it is implicitly
stated that within (strongly) recursive causal models that causes must always precede
their effects. That is, if an event occurred at a certain time, the events causing it must
occur before that point in time.

Definition 4.1.24. Given causal model with context and timing (I, σ, τ), for every n
let Ln(I,σ) ∶= {l ∈ L(I,σ) ∣ τ(l) ≤ n}. For each endogenous variable v and the literal l

containing v such that (I, σ) ⊧ l, τ is considered valid for v if

• l = v and τ(l) ≥mink∈N{Lk(I,σ) is sufficient for l};
• l = ¬v and τ(l) =mink∈N{Lk(I,σ) is sufficient for l}.

A timing is valid for (I, σ), if it is valid for all variables.

Example 4.1.10. Consider the window model I ∶= (Σ, Δ) from Example 4.1.2, with
the context σ ∶= {xAF ↦ true, xBF ↦ true}. A valid timing would be τ(xAF ) = 1,
τ(xW S) = 2 and τ(xBF ) = 3. Because {xAF } is sufficient for xW S and τ(xAF ) = 1. By
contrast, if given the context is σ ∶= {xAF ↦ false, xBF ↦ true} with τ(¬xAF ) = 1 and
τ(xBF ) = 3. Then the τ(xW S) = 2 would no longer be valid, i.e. the condition would
require that τ(¬xW S) = τ(¬xAF ) = 1.

Those restrictions naturally extend to partial timings as well.

Definition 4.1.25. A partial timing τ is possible w.r.t. (I, σ) if there exists a timing
τ ′ that extends τ such that τ ′ is valid w.r.t.(I, σ).
After having sufficiently elaborated upon the notion of timing in the context of causal
models, one finally move forward in defining the notion of production introduced in
[BV18].
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Definition 4.1.26. Given (I, σ, τ) with τ being a valid timing for (I, σ) and two
endogenous literals p and q, p is defined to be a direct producer of q if p is a direct
actual contributing cause of q w.r.t. (I, σ), with a witness L such that for each l ∈ L,
τ(l) ≤ τ(q).
Similar to the notion of direct contributing cause, the concept of production can be
generalised to an indirect version.

Definition 4.1.27. Given (I, σ, τ) with τ being a corresponding valid timing and let p
and q be two endogenous literals. p is producer of q, if there exists a sequence of literals
p = l1, . . . , ln = q so that for each i ∈ {1, . . . , n − 1} li is a direct producer of li+1.

The same definition can be made for partial timings.

Definition 4.1.28. Given (I, σ, τ ′) with τ ′ being a partial timing and two endogenous
literals p and q. p is a producer of q in (I, σ, τ ′) if there exists at least one valid timing
τ that extends τ ′ such that p is a producer of q in (I, σ, τ).
The last concept required for the third principle for causation is the notion of preemption.
Meaning that while producers are literals whose contribution helped to bring about the
effect, a literal that contributes, but fails to produce the effect, is classified as preempted.

Definition 4.1.29. Given (I, σ, τ) and two endogenous literals p and q. p is preempted
for q, if p contributes to q w.r.t. (I, σ) and is not a producer of p w.r.t. (I, σ, τ).
The third principle is as follows.

Definition 4.1.30. Given (I, σ, τ) and two endogenous literals p and q. If p is a cause
of q w.r.t. (I, σ, τ) then p is not preempted for q w.r.t. (I, σ, τ).
This principle establishes again a necessary condition. Moreover, if taken in conjunction
with the contributing principle one can strengthen the claim to p being a cause of q
implying that p is a producer of q.

Corollary 4.1.0.1. Given (I, σ, τ) and two endogenous literals p and q. If p is a cause
of q w.r.t. (I, σ, τ) then p is a producer of q w.r.t. (I, σ, τ).
In stark contrast with principle number three, the fourth principle is fairly simple. Its
only purpose is to regulate the relationship between the absence of a cause and the cause
itself.

Definition 4.1.31. Given (I, σ, τ) and two endogenous literals p and q. If p is a cause
of q w.r.t. (I, σ, τ) then ¬p is not a cause of q w.r.t. (I¬p, σ, τ¬p).
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Although [BV18] define an alternative version of the fourth principle to introduce non-
determinism into the definition, the previously stated ones were sufficient for their
definition of their token causality. [BV18] combine the insights collected in the formalisa-
tion of the above principles to reduce the notion of token causality back to production,
i.e. using said principles they were able to derive a definition of token causality using
only the notion of production.

Definition 4.1.32. Given (I, σ, τ) and two endogenous literals p and q, such that(I, σ, τ) ⊧ p ∧ q. p is a token cause of q w.r.t. (I, σ, τ) if p produces q and ¬p does not
produce q w.r.t. (I¬p, σ, τ¬p)
Example 4.1.11. Consider the window model I ∶= (Σ, Δ) from Example 4.1.2, with the
context σ ∶= {xAF ↦ true, xBF ↦ true}, with the valid timing τ(xAF ) = 1, τ(xW S) = 2
and τ(xBF ) = 3. As already established in Example 4.1.9, xAF is an actual contributing
cause of xW S and given the timing we can conclude that xAF is a direct producer of
xW S . Now if we intervene, we obtain (I¬xAF

, σ, τ¬xAF
) with the partial timing being

τ¬xAF
∶= {xAF ↦ 1, xBF ↦ 3}. In this model we have ¬xW S , thus ¬xAF can not be a

producer of xW S and therefore xAF is a cause of xW S .

4.1.4 Possible Causal Process Semantic
Here we present PCPS and CP2, unless otherwise specified the definitions are taken from
[DBV19].

The token causality definition PCPS introduced in [DBV19] uses CP2, a language closely
related to logic programming. Some of the defining features of CP2 are that it distinguishes
between firing and enabling conditions and that a theory expressed in this language
cannot contain contradicting rules. The latter condition is integral for CP2 as it allows
one to elegantly make a default and deviant value distinction. Apart from that, a fairly
standard condition a causal theory in PCPS must satisfy is acyclicity.

Definition 4.1.33. The language LCP2 over a propositional signature Σ ∶= (U ,V) contains
only causal mechanisms ϕ ∈ LCP2 of the form

l ← LT ∣∣ LE

where

• ← is the causal operator;

• Ef (ϕ) ∶= l is a literal of an endogenous variable from V, called the effect;

• Tc(ϕ) ∶= LT is a (possibly empty) set of literals called triggering conditions;

• Ec(ϕ) ∶= LE is a (possibly empty) set of literals called enabling conditions.

Moreover, Co(ϕ) ∶= LT ∪LE is the set of conditions of ϕ.
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The causal mechanism l ← ∣∣ represents the unconditional causal mechanism causing
l. Additionally, it must be noted that all literals can be partitioned into exogenous and
endogenous variables, with endogenous variables being the only ones that are affected by
the mechanism contained in a causal theory.

Definition 4.1.34. A causal theory Δ is a set of causal mechanisms that contains at
least one mechanism for each endogenous symbol and such that:

• Δ is acyclic, i.e., there exists a strict well-founded order on symbols such that for
each causal mechanism, the symbol in the effect is strictly greater than the symbols
of the conditions.

• Δ does not contain mechanisms with contradictory effects, i.e. p ← LT ∣∣ LE and¬p← L′T ∣∣ L′E .

The semantics accompanying this syntactic structure was constructed alongside the
following intuition. Firstly, for exogenous variables there are no causal mechanisms
constraining them. By contrast, for endogenous variables it is assumed that the causal
theory contains all causal mechanisms affecting them. Secondly, each endogenous variable
has both a default state and a deviant state, with the deviant state being the one that
can be produced by activating one of the corresponding causal mechanisms. Therefore,
once a variable switches into its deviant state, there is no possibility of returning to a
default state. Hence, this language cannot model mechanisms such as light switches.
Another consequence of this approach is that every deviant value is explained by a single
active causal mechanism in the theory, while any default value, the product of inertia,
can only be explained by the fact that all causal mechanisms influencing its value are
blocked.

Example 4.1.12. We consider the scenario were Alice fires (AF ) at a window, if Billy
closed the window (BC) the window will shatter (WS). This scenario can be captured
with the causal theory Δ ∶= {xW S ← xAF ∣∣ xBC}, i.e. the shattering of the window is
triggered by xAF and enabled by xBC . We will refer to this mechanism as η1.

Due to the separation of triggering and enabling conditions, causal mechanisms have
several levels of activation, namely they can be blocked, active, inactive, applicable,
triggered, failed and satisfied.

Definition 4.1.35. Consider a world σ. A causal mechanism ϕ is

• blocked in σ by a condition l ∈ Co(ϕ) if ¬l ∈ σ;

• active in world σ, if Tc(ϕ) ⊆ σ and inactive otherwise;

• applicable in σ, if Co(ϕ) ⊆ σ;

• failed in σ, if it is active but blocked by an enabling condition;
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• satisfied in σ, if it is blocked or if its effect holds in σ.

With those distinctions in mind, one can formulate two auxiliary definitions, required for
defining the structure over which statements in CP2 are evaluated.

Definition 4.1.36. Consider a world σ. Consider some endogenous literal l and some
ϕ ∈ δl,

• the set δσ
l ⊆ δl of applicable mechanisms in σ will be called the firing set of l.

• the set Co¬σ(ϕ) ⊆ Co(ϕ) is the set of conditions of ϕ that are false in σ.

Example 4.1.13. Given the scenario in Example 4.1.12 and

• the world σ ∶= {xAF , xBC , xW S}, η1 is active due to {xAF } ⊆ σ, applicable due to{xAF , xBC} ⊆ σ and satisfied due to xW S ∈ σ, thus δσ¬xW S
= {η1} and Co¬σ(η1) = ∅;

• the world σ ∶= {¬xAF , xBC ,¬xW S}, η1 is blocked and satisfied due to xAF /∈ σ, thus
δσ¬xW S

= ∅ and Co¬σ(η1) = {¬xAF };
• the world σ ∶= {xAF ,¬xBC ,¬xW S}, η1 is active due to {xAF } ⊆ σ and blocked due

to xBC /∈ σ which implies that it is failed, thus δσ¬xW S
= ∅ and Co¬σ(η1) = {¬xBC};

• the world σ ∶= {¬xAF ,¬xBC ,¬xW S}, η1 is blocked due to xAF /∈ σ, thus δσ¬xW S
= ∅

and Co¬σ(η1) = {¬xAF ,¬xBC}.
Notice that if l is default in σ then Co¬σ(ϕ) ≠ ∅, likewise if l is deviant in σ then δσI

p ≠ ∅.
A possible causal process for a causal theory Δ can be modelled as an acyclic directed
graph.

Definition 4.1.37. A possible causal process for Δ over some vocabulary Σ, is a directed
graph I with labelled vertices and edges. The set of vertices correspond to a world,
denoted as σI and are labelled accordingly. The set of edges, all labelled with a particular
mechanism, is constructed as follows. Consider some endogenous literal p ∈ σI ,

• if p is deviant, then for all ϕ ∈ δσI
p and for all q ∈ Co(ϕ) there exists an edge (q, p)

in E(I) which is labelled with ϕ. (There are no other edges to p in E(I))
• if p is default, then for each ϕ ∈ δp and for each q ∈ Co¬σI(ϕ) here exists an edge(p, q) in E(I) which is labelled with ¬ϕ. (There are no other edges to p in E(I))

Intuitively, for a deviant endogenous literal one requires the existence of at least one path
from the exogenous variable justifying the existence of the deviant value in the world. By
contrast, to justify a default variable one needs to demonstrate that no causal mechanism
fired.
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Example 4.1.14. Building on Example 4.1.13.

• Consider the world σ ∶= {xAF , xBC , xW S} which results in

xAF

xBC

xW S

η1

η1

because xW S is deviant, η1 is applicable and both xAF and xBC are conditions
of η1. The edge (xAF , xW S) is a trigger edge, while the edge (xBC , xW S) is an
enabling edge.

• Consider the world σ ∶= {¬xAF , xBC ,¬xW S} which results in

¬xAF

xBC

¬xW S

¬η1

because xW S is default and Co¬σ(η1) = {¬xAF }. The edge (¬xAF ,¬xW S) is a
non-trigger edge.

• Consider the world σ ∶= {xAF ,¬xBC ,¬xW S} which results in

xAF

¬xBC

¬xW S¬η1
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because xW S is default and Co¬σ(η1) = {¬xBC}. The edge (¬xBC ,¬xW S) is a
failure edge.

• Consider the world σ ∶= {¬xAF ,¬xBC ,¬xW S} which results in

¬xAF

¬xBC

¬xW S

¬η1

¬η1

because xW S is default and Co¬σ(η1) = {¬xAF ,¬xBC}. The edge (¬xAF ,¬xW S) is
a non-trigger edge and edge (¬xBC ,¬xW S) is a failure edge.

Definition 4.1.38. Consider some edge (q, p) in a causal process I. If

• the edge is labelled with ϕ then this edge is called an active edge. Active edges are

– trigger edges, if q ∈ Tc(ϕ) or
– enabling edges, if q ∈ Ec(ϕ).

• ¬ϕ then this edge is called an blocking edge. Blocking edges are

– non-trigger edges, if q ∈ Tc(ϕ) or
– failure edges, if q ∈ Ec(ϕ).

This semantic actually induces a possible world semantic.

Definition 4.1.39. A causal process I realises the world σ if σ = σI(= V (I)). We call
σ a possible world of causal theory Δ if it is realised by some causal process for Δ.

According to [DBV19] and [DBV18] multiple notions related to token causality can be
introduced using this formalism. The weakest one related to causality is the notion of
influence, i.e. a variable influences another if there is a path in a causal process starting
at the former and terminating at the latter.

Definition 4.1.40. A literal p is an influence of q in a possible causal process I of Δ, if
there is a path from p to q in I.
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By simply restricting the set of causal paths used to justify the claim of influence, various
refinements of the notion of influence can be defined. For example, active influence is
defined, by requiring all paths to contain only active edges. The notion of token causality is
stricter, allowing one to distinguish between triggering and enabling conditions, which up
until now were treated symmetrically. This asymmetry ensures that enabling conditions
are not considered to be token causes.

Definition 4.1.41. A literal p is an actual P -cause (production-cause) of literal q in
process I if there is a path from p to q in I containing only

• trigger edges,

• non-trigger edges and

• failure edges of active causal mechanisms.

p is a direct P -cause, if there exists a path of length 1 to q, otherwise it is an indirect
P -cause.

This definition implies that a path serving as a witness for P -cause claim cannot contain
enabling edges and failure edges of non-active causal mechanisms. Moreover, further
restrictions of this concept are possible, e.g. active P -cause.

Example 4.1.15. Building on Example 4.1.15.

• In the world σ ∶= {xAF , xBC , xW S} we can declare xAF a cause of xW S because of
the trigger edge. By contrast, xBC cannot be a cause as it is only connected to
xW S by an enabling edge.

• In the world σ ∶= {¬xAF , xBC ,¬xW S} we can declare ¬xAF a cause of ¬xW S because
of the non-trigger edge. By contrast, xBC cannot be a cause as it is not connected
to ¬xW S .

• In the world σ ∶= {xAF ,¬xBC ,¬xW S} we can declare ¬xBC a cause of ¬xW S because
of the failure edge and because of η1 being an active mechanism. By contrast, xAF

cannot be a cause as it is not connected to ¬xW S .

• In the world σ ∶= {¬xAF ,¬xBC ,¬xW S} we can declare ¬xAF a cause of ¬xW S

because of the non-trigger edge. By contrast, xBC cannot be a cause, because the
mechanism η1 is not active, thus the failure edge connecting the literal to ¬xW S is
ignored.
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4.1.5 Causal Inference
Here we present BCI and CT, unless otherwise specified the definitions are taken from
[Boc18a].

Syntactically the language underlying Bochmans Causal Inference Theory BCI is a simple
propositional language, containing an additional binary connective ⇒, with ϕ ⇒ ψ
indicating that ϕ causes ψ.

Definition 4.1.42. The language LCT can be constructed over the signature Σ = W
using the classic propositional language LB (over Σ), which is extended to LCT by adding

• if ϕ ∈ LB then ϕ ∈ LCT.

• if ϕ, ψ ∈ LB, then ϕ⇒ ψ ∈ LCT.

Semantically, this language can be seen as a construction consisting of two layers. The
top one is non-monotonic and regulates which worlds model a certain theory, while the
bottom layer specifies the behaviour of causal relation present in the language.

Definition 4.1.43. A causal theory Δ is an arbitrary set of causal rules, i.e. Δ ⊆ LCT.
Moreover, let X be a set of propositions

Δ(X) = {ψ ∣ ϕ⇒ ψ ∈Δ ∧ϕ ∈X}
is the set of propositions that are caused by X in Δ.

In the context of BCI one can speak of two different kinds of semantics, both of which
are constructed using the idea of an exact model of a causal theory.

Definition 4.1.44. A consistent set of propositions X is an exact model of a causal
theory Δ, if X = Th(Δ(X)).

• A general nonmonotonic semantics of a causal theory Δ is the set of all its exact
models.

• A causal nonmonotonic semantics of a causal theory Δ is the set of all its exact
models that are worlds of Δ, i.e. that are propositional interpretations of Δ.

The semantic of this logic is non-monotonic and serves as a top layer, allowing one to
plug in a suitable logic for specifying the behaviour of the causal binary connective. In
[Boc18a] this relation is specified on an axiomatic basis as a production inference relation.

Definition 4.1.45. A production inference relation is a binary relation ⇒ on the set of
classical propositions satisfying the following conditions:

• Strengthening: If ϕ ⊧ ψ and ψ⇒ χ, then ϕ⇒ χ;
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• Weakening: If ϕ⇒ ψ and ψ ⊧ χ, then ϕ⇒ χ;

• And: If ϕ⇒ ψ and ϕ⇒ χ, then ϕ⇒ ψ ∧ χ;

• Truth: ⊺ ⇒ ⊺;
• Falsity: � ⇒ �.

However, for the definition of token causality a production relation alone is not sufficient.
Hence, the following additional properties are required.

Definition 4.1.46. Let ⇒ be a production inference. The relation ⇒
• is called regular, if it satisfies satisfies Cut, i.e. ϕ⇒ ψ and ϕ ∧ψ⇒ χ, then ϕ⇒ χ.

• is called basic, if it satisfies satisfies Or, i.e. If ϕ⇒ χ and ψ⇒ χ, then ϕ ∨ ψ⇒ χ.

• is called causal, if it is basic and regular

The causal inference relation is fairly similar to the classical entailment satisfying most
of its properties, but for the Reflexivity and Contraposition postulates. Moreover, since
causal inference relations are basic, any rule can be rewritten to be in clausal form,
i.e. ⋀ li ⇒ ⋁ lj with li and lj being classical literals. This form is essential for the
definition of token causality within BCI, as token causality is (at least within BCI and
some other frameworks) highly sensitive to the syntactic form of causal rules, requiring
the introduction of a clausal causal theory.

Definition 4.1.47. Let Δ be a causal theory.

• Δ is called a clausal causal theory if any rule in Δ is of the form l1, . . . , ln ⇒ l (with
li for i ∈ {1, . . . , n} and l being literals).

• Δ is called parsimonious, if no causal rule from Δ is derivable from the from the
rest of the rules in Δ by causal inference.

As a quick interlude. It was demonstrated in [BL15] that the resulting language can
capture binary causal models.

Definition 4.1.48. For any boolean causal model ICM, ΔICM is the causal theory consisting
of the rules

ϕ⇒ x and ¬ϕ⇒ ¬x

for δx in ICM being x ∶= ϕ and

u⇒ u and ¬u⇒ ¬u

for each u ∈ U .
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Moreover, the exact worlds of ΔICM correspond with the solution of the structural equations
from ICM, which Bochman refers to as causal worlds.

The definition of token causality presupposes some causal theory Δ and some “actual”
world σ, which is in fact the exact (causal) world w.r.t. Δ.

Definition 4.1.49. Let σ be an exact world of a clausal causal theory Δ. A causal rule
l1, . . . , ln ⇒ l is active in σ if {l1, . . . , ln} ⊆ σ. Moreover, the actual sub-theory Δσ ⊆Δ, is
the set of all causal rules from Δ that are active in σ.

Additionally, Bochman introduces a relation that is dependent on the actual world.

Definition 4.1.50. Let σ be a causal world of a parsimonious clausal causal theory Δ.
A literal l′ ∈ σ is an actual cause of a literal l in σ wrt. Δ, if and only if there exists a set
of literals L ⊆ α such that

• l′, L⇒σ l,

• L /⇒σ l

with ⇒σ being the least causal inference relation that includes Δσ.

To aid in understanding consider the following example.

Example 4.1.16. Consider the simple scenario described in [BV18]: If Alice fires at
the window (AF ), it will shatter (WS). If Bob fires at the window (BF ) he will always
miss. This results in the clausal causal theory Δ ∶= {xAF ⇒ xW S ,¬xAF ⇒ ¬xW S ,}. Now
given the world σ ∶= {xAF , xBF } the resulting sub-theory of active causal rules contains
only xAF ⇒ xW S . Hence, xAF causes xW S , because true /⇒ xW S . Similarly, in the
world σ ∶= {¬xAF , xBF } the resulting sub-theory of active causal rules contains only¬xAF ⇒ ¬xW S . Hence, ¬xAF causes ¬xW S , as true /⇒ ¬xW S .

4.2 Benchmarks
In this section, we compare the previously introduced token causal definitions, i.e. HP-15,
BV-CM, PCPS and BCI, by applying them to the set of benchmarks introduced in Section
3.3. These are Benchmark 3.3.1 which is an instance of Symmetric Overdetermination;
Benchmark 3.3.2 which is an instance of Switching; Benchmark 3.3.3 which is an instance of
Late Preemption; Benchmark 3.3.4 which is an instance of Early Preemption; Benchmark
3.3.5 which is an instance of Double Preemption; Benchmark 3.3.6 which is an instance
of Bogus Preemption; Benchmark 3.3.7 which is an instance of Short-Circuiting.

For each of the aforementioned benchmarks, we want to establish the causes of a particular
target variable. Hence, the definitions will be compared based on the set of causes they
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identified, as well as whether those causes comply with the intuitively “correct” answer
for that particular scenario.

The benchmarks Symmetric Overdetermination, Switch, Late Preemption and Early
Preemption are relatively old and often discussed in the literature. Hence, we were able to
find formalisations and evaluations of those scenarios for most of the discussed definitions.
However, especially the newer benchmarks such as Bogus Preemption and Short Circuit
are discussed less frequently and exhibit greater diversity of formalisations. Therefore,
the above formalisations and results are partially taken from the literature and partially
derived natively. To avoid confusion, this will be made explicit on a case by case basis.

The remaining section is structured as follows. Section 4.2.1-4.2.7 briefly re-introduce the
example scenario, mention which events should be considered causes and then sketch the
derivations for each of the four definitions. To accustom the reader with the inference
procedures, the derivations decrease in detail as the section progresses. Lastly, Section
4.2.8 concludes by comparing the definitions given the results of the previous subsections.

4.2.1 Symmetric Overdetermination
Benchmark 3.3.1 is an instance of “Symmetric Overdetermination”, which refers to the
scenario, where multiple processes, all of which producing the same outcome, terminate at
the same time. For a detailed discussion on this topic see Section 3.3.2. This benchmark
describes the following scenario.

Alice (AF ) and Bob (BF ) each fire a bullet at a window, simultaneously
striking the window, shattering it (WS).

We want to establish, whether AF or BF is a cause of WS. Here the intuitive answer is
that both AF and BF are causes of WS, or at the very least that both contribute to
causing WS.

The modified Halpern and Pearl Definition

We define the binary causal model over the variables AF , BF and WS, i.e. I ∶= (Σ, Δ)
for Σ ∶= ({xAF , xBF },{xW S},R) with R being the constant function mapping to the set{true, false}, and Δ is the set of structural equations, containing the equations

xW S ∶= xAF ∨ xBF

The story suggests the context σ ∶= {xAF ↦ true, xBF ↦ true}.
Given the context we have (I, σ) ⊧ xAF and from the structural equation xW S ∶=
xAF ∨ xBF we obtain (I, σ) ⊧ xW S . AC1 is thus satisfied. Moreover, AC3 is trivially
satisfied as the only subset is the empty set. What remains is to demonstrate AC2.
However, given the context, changing the value of xAF in isolation does not influence the

108



4.2. Benchmarks

value of xW S , i.e. with (I, σ) ⊧ xBF the disjunct xAF ∨ xBF is always satisfied. Hence,
xAF is not a cause of xW S . The same reasoning applies for xBF .

Moreover, HP-15 goes beyond mere literals as causes, thus we can check whether
xAF ∧ xBF is a cause of xW S . To do so we notice that AC1 is satisfied because (I, σ) ⊧
xAF ∧ xBF and (I, σ) ⊧ xW S . AC2 is satisfied, as we are now allowed to modify both
xAF and xBF , thus we can satisfy (I, σ) ⊧ [¬xAF ,¬xBF ]¬xW S . Lastly, AC3 is trivially
satisfied given the observations above.

In summary, only the formula xAF ∧ xBF is considered a cause of xW S . Moreover, this
result as well as the formalisation can be found in [Hal15a].

A principled approach to actual causality

We define the binary causal model with the set of structural equations containing the
equations

xW S ∶= xAF ∨ xBF

Moreover, we define the context to be σ ∶= {xAF ↦ true, xBF ↦ true} and the timing to
be

τ(xAF ) = τ(xBF ) = 1 τ(xW S) = 2

Firstly, the timing is valid. For τ(xW S) we have at least one sufficient set, e.g. {xAF },
which holds at time step 1. Since there is no dependence between xAF and xBF and
since there are no other literals, assigning both the value of 1 is clearly valid.

To establish the causal claim “xAF is the cause of xW S”, we must ensure that (I, σ, τ) ⊧
xAF ∧ xW S , that xAF produces xW S w.r.t. (I, σ, τ), and that ¬xAF does not produce
xW S w.r.t. (I¬xAF

, σ, τ¬xAF
).

Starting with the positive case, to identify a production relationship, we need to demon-
strate that xAF is a direct actual contributing cause of xW S w.r.t. (I, σ), with a witness
L such that for each l ∈ L, τ(l) ≤ τ(xW S). Moreover, a direct actual contributing cause
requires us to find a set of literals L with xAF ∈ L such that L is sufficient for xW S , but
L ∖ {xAF } is not. In addition to that we require that (I, σ) ⊧ xAF ∧ xW S holds. Lastly,
L is sufficient if (⋀l∈L l) implies δxW S

. We propose that {xAF } is such a sufficient set,
because xAF clearly implies xAF ∨ xBF . Moreover, xAF is an actual contributing cause
because (I, σ) ⊧ xAF ∧ xW S and because {xAF } ∖ {xAF } is not sufficient. Hence, xAF is
a producer of xW S , because τ(xAF ) < τ(xW S).
Now we need to consider the negative case. To do so we intervene on our model such that¬xAF holds. However, ¬xAF does not help us to infer xAF ∨ xBF , thus we can reduce
the size of any sufficient set for xW S by removing ¬xAF . Hence, ¬xAF cannot be an
actual contributing cause and therefore it cannot be a producer. Finally, allowing us to
establish the claim that xAF is a cause of xW S .
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Causal claims in this language are restricted to literals. Hence, we cannot test whether
xAF ∧ xBF is a cause of xW S .

In summary, both literals xAF and xBF are considered causes of xW S . Moreover, this
result as well as the formalisation can be found in [BV18].

Possible Causal Process Semantic

We define the following causal theory

ϕ1 ∶= xW S ← xAF ∣∣
ϕ2 ∶= xW S ← xBF ∣∣

Moreover, the situation suggests the world σ ∶= {xAF , xBF , xW S}. Now notice that
both causal mechanisms are applicable and active because {xAF } ⊆ σ and {xBF } ⊆ σ.
Furthermore, because xW S ∈ σ they are also satisfied. Given this we can draw the causal
process I

xAF

xBF

xW S

ϕ1

ϕ2

where both edges are trigger edges, therefore both xAF and xBF are actual P -causes of
xW S .

In summary, both literals xAF and xBF are considered causes of xW S . Moreover, this
result as well as the formalisation can be found in [DBV18].

Causal Inference

We define the following clausal causal theory

xAF ⇒ xAF ¬xAF ⇒ ¬xAF

xBF ⇒ xBF ¬xBF ⇒ ¬xBF

xAF ⇒ xW S ¬xAF ,¬xBF ⇒ ¬xW S

xBF ⇒ xW S
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from the causal model formulation using the algorithm defined in [Boc18a]. Moreover,
the situation suggests the world σ ∶= {xAF , xBF , xW S}. The resulting sub-theory of active
rules is

xAF ⇒ xAF

xBF ⇒ xBF

xAF ⇒ xW S

xBF ⇒ xW S

Now given that xAF ⇒ xW S and xBF ⇒ xW S are active in this world and the fact that
true /⇒ xW S , both xAF and xBF are causes of xW S .

In summary, both literals xAF and xBF are considered causes of xW S . Moreover, this
result as well as the formalisation can be found in [Boc18a].

4.2.2 Switch
Benchmark 3.3.2 is an instance of Switch, which refers to the scenario, where an event
serves a switch triggering one of two processes, both of which produce the same outcome.
For a detailed discussion on this topic see Section 3.3.3.

This benchmark describes the following scenario.

Alice flicks a switch (AF ). The train travels on track A (TA), otherwise the
train would have travelled on track B (TB). In both cases the train arrives
at its destination (TD).

We want to find the causes for TD. Although there is disagreement about what the
causes of TD should be. We adhere to the view that TA is a cause of TD, while both
AF and TB are not.

The modified Halpern and Pearl Definition

We define the binary causal model containing the equations

xT A ∶= xAF

xT B ∶= ¬xAF

xT D ∶= xT A ∨ xT B

Moreover, the story suggests the context σ ∶= {xAF ↦ true}.
First we want to check whether xAF is a cause of xT D. To answer this question we
observe that (I, σ) ⊧ xAF and (I, σ) ⊧ xT D. Moreover, we observe that regardless of the
setting of xAF , xT D will always hold. However, by fixing the value of xT B, which is false
under (I, σ) ⊧ xAF , we can obtain (I, σ) ⊧ [¬xAF ∧ ¬xT B]¬xT D. Hence, we can declare
xAF a cause of xT D. By contrast, ¬xT B is not a cause of xT D, because regardless of
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which variables we fix no intervention on xT B can result in ¬xT D. Lastly, xT A is clearly
a cause of xT D. That is, both hold in the given model, intervening on xT A results in¬xT D.

As a side note. This definition is able to provide the desired results by removing the
intermediate variables

xT D ∶= xAF ∨ ¬xAF

Then, (I, σ) ⊧ [¬xAF ]xT D and (I, σ) ⊧ [xAF ]xT D, which combined with the insights
above indicate that xAF is not a cause of xT D.

In summary, both literals xAF and xT A are considered causes of xT D. In this particular
instance we used the formalisation found in [Wes15]. Hence, the derived results are
independent of the discussion found in [Hal15a].

A principled approach to actual causality

We define the binary causal model containing the equations
xT A ∶= xAF

xT B ∶= ¬xAF

xT D ∶= xT A ∨ xT B

Moreover, we define the context to be σ ∶= {uAF ↦ true} and since timing is not
important we simply set τ to be the constant function 1, as we only require that causes
happen either before or at the same moment as their effects.

We test whether xAF is a cause of xT D. To establish production we notice that L ∶= {xAF }
is a sufficient set, whereas the empty set is not. Hence, xAF is an actual contributing cause
of xT A. Moreover, since τ is constant and ∣L∣ = 1 it suffices to notice that τ(xAF ) ≤ τ(xT A),
in order to establish that xAF directly produces xT A. Moreover, by the same reasoning
we obtain that xT A directly produces xT D. Hence, we obtain that xAF produces xT D.

However, notice that ¬xAF is a producer of xT D in the modified model (Δ¬xAF
, σ, τ¬xAF

).
That is, we have (Δ¬xAF

, σ, τ¬xAF
) ⊧ xT B. Now {¬xAF } trivially implies ¬xAF while

the empty set does not. Hence, with a constant timing we obtain that ¬xAF directly
produces xT B . By similar reasoning we obtain xT B directly produces xT D, which allows
us to deduce that ¬xAF produces xT D. Hence, we can conclude that neither xT A nor¬xT A are causes of xT D.

Having already established that xT A produces xT D, we only need to show that ¬xT A

does not produce xT D w.r.t. (Δ¬xT A
, σ, τ¬xT A

). However, it is easy to see that xT D does
not hold in (Δ¬xT A

, σ, τ¬xT A
), which implies that it cannot be produced by ¬xT A and we

obtain xT A is a cause of xT D.

Finally, to show that ¬xT B is not a cause of xT D, it is sufficient to notice that in the
original model, any sufficient set containing ¬xT B remains sufficient once this literal is
removed. Hence, ¬xT B does not produce xT D and thus fails to be a cause.

112



4.2. Benchmarks

In summary, only the literal xT A is considered a cause of xT D. The formalisation and the
result that xAF is not a cause of xT D, can be found in [BV18]. However, the remaining
literals had to be checked independently.

Possible Causal Process Semantic

We define the following causal theory

ϕ1 ∶= xT A ← ∣∣ xAF

ϕ2 ∶= xT B ← ∣∣ ¬xAF

ϕ3 ∶= xT D ← xT A ∣∣
ϕ4 ∶= xT D ← xT B ∣∣

Moreover, the situation suggests the world σ ∶= {xAF , xT A,¬xT B, xT D}. Now notice that
ϕ1 and ϕ3 are applicable, active and satisfied. ϕ2 is a failed causal mechanism, i.e. it is
active and blocked by the enabling condition ¬xAF . Finally, ϕ4 is blocked and satisfied.

Given this we can draw the causal process I

xAF

xT A

¬xT B

xT D

ϕ1 ϕ3

¬ϕ2

where the edge (xT A, xT D) is a trigger edge, therefore xT A is an actual P -cause of
xT D. However, since xAF is only an enabling condition in ϕ1 the edge (xAF , xT A) is an
enabling edge and thus xAF is not an actual P -cause of xT D. Moreover, because ϕ4 is
not applicable, ¬xT B cannot be an actual P -cause of xT D.

In summary, only the literal xT A is considered a cause of xT D. The formalisation and
the result that xAF is not a cause of xT D, can be found in [DBV18] in a slightly different
form. However, the remaining literals had to be checked independently.
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Causal Inference

We define the following clausal causal theory

xAF ⇒ xT A ¬xAF ⇒ ¬xT A¬xAF ⇒ xT B xAF ⇒ ¬xT B

xT A ⇒ xT D ¬xT A,¬xT A ⇒ ¬xT D

xT B ⇒ xT D

xAF ⇒ xAF ¬xAF ⇒ ¬xAF

Moreover, the situation suggests the world σ ∶= {xAF , xT A,¬xT B, xT D}, thus the following
causal rules are active.

xAF ⇒ xAF

xAF ⇒ xT A

xT A ⇒ xT D

xAF ⇒ ¬xT B

From xAF ⇒ xT A and xT A ⇒ xT D we get xAF ⇒ xT D and because of true /⇒ xT D we
obtain xAF is a cause of xT D. Moreover, due to xT A ⇒ xT D we have xT A is a cause of
xT D given that true⇒ xT D. Finally, given the sub-theory we cannot derive that xT B is
a cause of xT D.

In summary, both literals xT A and xAF are considered causes of xT D. The formalisation
and the results can be found in [Boc18a] in a slightly different form.

4.2.3 Late Preemption
Here we test Benchmark 3.3.3 against the presented formalisms. This example is an
instance of “Late Preemption”, which refers to the scenario, where there are two causal
processes running in parallel, both would produce the same outcome, but one process
terminates before the other does. For a detailed discussion on this topic see Section 3.3.4.

This benchmark describes the following scenario.

Alice (AF ) and Bob (BF ) each fire a bullet at a window. Alice’s bullet hits
the window first (AH). The window shatters (WS). Bob’s bullet arrives
second and does not hit the window (BH).

We want to find the causes for WS. Here intuition dictates that AF and AH are causes
of WS, while BF and BH are not.
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The modified Halpern and Pearl Definition

We define the binary causal model containing the equations

xAH ∶= xAF

xBH ∶= xBF ∧ ¬xAH

xW S ∶= xAH ∨ xBH

Moreover, the story induced the context σ ∶= {xAF ↦ true, xBF ↦ true}.
First, xAF is a cause of xW S . That is, if we freeze the value of xBH , which under the
current model evaluates to false, then we obtain ¬xW S , i.e. (I, σ) ⊧ [¬xAF ∧¬xBH]¬xW S .
Due to xAF being essentially a proxy for xAH , the same argument can be employed to
establish xAH is a cause of xW S .

xBF fails to be a cause of xW S , because xBF ∧ ¬xAH will always be false regardless of
the value of xBF as we are unable to modify xAH . Moreover, ¬xBH fails to be a cause as
well, due to xAH ∨ xBH being true regardless of the value of xBH .

In summary, both literals xAF and xAH are considered causes of xW S . Moreover, the
formalisation and the results can be found in [Hal15a].

A principled approach to actual causality

We define the binary causal model containing the equations

xAH ∶= xAF

xBH ∶= xBF

xW S ∶= xAH ∨ xBH

Notice, that because of the timing introduced below, we can replace the structural
equation for xBH with xBH ∶= xBF . Moreover, we define the context to be σ ∶= {xAF ↦
true, xBF ↦ true} and the timing to be

τ(xAF ) ∶= τ(xBF ) = 1
τ(xAH) ∶= 2
τ(xW S) ∶= 3
τ(xBH) ∶= 4

Moreover, because all literals satisfied are positive and all causes come before their effects,
the timing is valid.

It is easy to see that xAF is a direct producer of xAH because of τ(xAF ) ≤ τ(xAH). In
a similar fashion, xAH is a direct producer of xW S because of τ(xAH) ≤ τ(xW S) and
because xAH → xAH ∨ xBH holds, while ⊺ → xAH ∨ xBH does not. Hence, xAF produces
xW S . By contrast, ¬xAF does not produce xW S in (Δ¬xAF

, σ, τ¬xAF
), because ¬xAF

produces neither xAH nor xBH . Therefore, failing to produce xW S , implying that xAF is
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in fact a cause. Moreover, since ¬xAH does not produce xW S in (Δ¬xAH
, σ, τ¬xAH

) we
obtain that xAH is a cause as well.

As for xBF , while it produces xBH in a symmetric fashion to xAF and xAH . The chain
of production fails because xBH is a mere actual contributing cause of xW S . That is,
while (Δ, σ, τ) ⊧ xBH ∧ xW S and {xBH} is sufficient for xW S while ∅ is not, we have
τ(xBH) = 4 > 3 = τ(xW S). Hence, any sufficient set that contains xBH fails to be a proper
witness to establish production.

In summary, both literals xAF and xAH are considered causes of xW S . Moreover, the
formalisation and the results can be found in [BV18].

Possible Causal Process Semantic

We define the following causal theory

ϕ1 ∶= xAH ← xAF ∣∣
ϕ2 ∶= xBH ← xBF ∣∣ ¬xAH

ϕ3 ∶= xW S ← xAH ∣∣
ϕ4 ∶= xW S ← xBH ∣∣

Moreover, the situation suggests the world σ ∶= {xAF , xBF , xAH ,¬xBH , xW S}. Now notice
that ϕ1 and ϕ3 are applicable, active and satisfied, while ϕ2 is a failed causal mechanism,
i.e. it is active and blocked by the enabling condition ¬xAH . Given ¬xBH the mechanism
ϕ4 is blocked but satisfied. Given this we can draw the causal process I.

xAF

xBF

xAH

¬xBH

xW S

ϕ1

¬ϕ2
ϕ3

The edges (xAF , xAH) and (xAH , xW S) are trigger edges, thus both xAF and xAH are
causes of xW S . By contrast, there does not exist a path that reaches xW S from xBF and¬xBH , thus both fail to be causes.

In summary, both literals xAF and xAH are considered causes of xW S . Moreover, the
formalisation and the results can be found in [BV18].
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Causal Inference

We define the following clausal causal theory

xAF ⇒ xAF ¬xAF ⇒ ¬xAF

xBF ⇒ xBF ¬xBF ⇒ ¬xBF

xAF ⇒ xAH ¬xAF ⇒ ¬xAH

xBF ,¬xAF ⇒ xBH ¬xBF ⇒ ¬xBH

xAH ⇒ xW S xAF ⇒ ¬xBH

xBH ⇒ xW S ¬xAB,¬xBH ⇒ ¬xW S

Moreover, the situation suggests the world σ ∶= {xAF , xBF , xAH ,¬xBH , xW S}, thus the
following causal rules are active.

xAF ⇒ xAF

xBF ⇒ xBF

xAF ⇒ xAH

xAH ⇒ xW S

xAF ⇒ ¬xBH

From xAF ⇒ xAH and xAH ⇒ xW S we get xAF ⇒ xW S and because of true /⇒ xW S we
obtain xAF and xAH are causes of xW S . Moreover, given this sub-theory we are unable
to infer that ¬xBH and xBF are causes of xW S .

In summary, both literals xAF and xAH are considered causes of xW S . Moreover, the
formalisation and the results can be found in [Boc18a].

4.2.4 Early Preemption
Benchmark 3.3.4 is an instance of “Early Preemption”, which refers to the scenario,
where there are two causal processes, both would produce the same outcome, but one
process terminates before the other can even start. For a detailed discussion on this topic
see Section 3.3.5.

Benchmark 3.3.4 describes the following scenario.

Alice fires a bullet at the window (AF ). If Alice hits the window, the window
shatters (WS). If Alice does not hit the window, Bob fires a bullet at the
window (BF ), hitting it (BH) leading to its shattering.

We want to find the causes for WS. Here it is slightly unclear whether AF should be
considered a cause of WS, see the discussion in Section 3.3.5. However, in this instance
we side with the majority and declare that AF should be considered a cause while ¬BF
should not.
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The modified Halpern and Pearl Definition

We define the binary causal model containing the equations

xBF ∶= ¬xAF

xW S ∶= xAF ∨ xBF

Moreover, the story induced the context σ ∶= {xAF ↦ true}.
First, xAF . If we freeze the value of xBF , which under the current model amounts to
false, i.e. (I, σ) ⊧ ¬xBF . Then we obtain (I, σ) ⊧ [¬xAF ∧¬xBH]¬xW S . Hence, xAF is a
cause of xW S . Second, ¬xBF . It fails to be a cause, because the value of xW S will always
be true regardless of the value of xBF as we are unable to modify xAF .

In summary, only the literal xAF is considered a cause of xW S . Moreover, the discussed
formalisation of the scenario was taken from [BV18]. Hence, the discussed results had to
be derived independently of the literature.

A principled approach to actual causality

We define the binary causal model containing the equations

xBF ∶= ¬xAF

xW S ∶= xAF ∨ xBF

Moreover, we define the context to be σ ∶= {uAF ↦ true} and the timing to be

τ(xAF ) ∶= 1
τ(¬xBF ) ∶= 1
τ(xW S) ∶= 2

Notice that it would have been sufficient to set τ to be constant. However, it would not
have been valid to set τ(¬xBF ) > 1, because xAF occurs at time 1 and after that no event
can bring forth xBF .

We want to assess whether xAF is a cause of xW S . We can observe that this behaves
similar to a Switch scenario. To be precise, xAF is an actual contributing cause, because{xAF } is sufficient and the empty set is not. Now with τ(xAF ) ≤ τ(xW S) we establish
production. However, ¬xAF produces xBF in (Δ¬xAF

, σ, τ¬xAF
), because {¬xAF } is

sufficient for xBF while ∅ is not and there exists at least one extension of the partial
timing τ¬xAF

∶= {xAF ↦ 1} such that τ¬xAF
(¬xAF ) ≤ τ¬xAF

(xBS). An argument similar to
the one for xAF can be made to establish that xBF produces xW S . Hence, we obtain ¬xAF

produces xW S and must therefore conclude that xAF is not a cause of xW S . Moreover,¬xBF fails to be a cause of xW S , because there cannot be a minimally sufficient set
containing ¬xBF .

In summary, we can conclude there is no cause of xW S . In [BV18] they discuss a more
involved formalisation that includes the accuracy of both participants. Hence, the exact
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results are not present in [BV18]. However, given that they consider Early Preemption
as an instance of Switch, the derived results are similar to the Switch-example found in
[BV18].

Possible Causal Process Semantic

We define the following causal theory

ϕ1 ∶= xW S ← xAF ∣∣
ϕ2 ∶= xBF ← ¬xAF ∣∣
ϕ3 ∶= xW S ← xBF ∣∣

Moreover, the situation suggests the world σ ∶= {xAF ,¬xBF , xW S}. Now notice that ϕ1
is applicable, active and satisfied. ϕ2 and ϕ3 are blocked and satisfied. Given this we
can draw the causal process I

xAF

¬xBF

xW S
ϕ1

¬ϕ2

where the edge labelled with ϕ1 is a trigger edge, therefore xAF is an actual P -cause of
xW S . Because, ϕ3 is not applicable, ¬xBF is not an actual P -cause of xW S .

In summary, only the literal xAF is considered a cause of xW S . The formalisation and
the results can be found in [DBV18] in a slightly different form.

Causal Inference

Similar as it is done in [Boc18a], we define the following clausal causal theory

xAF ⇒ xAF ¬xAF ⇒ ¬xW S¬xAF ⇒ xBF xAF ⇒ ¬xBF

xAF ⇒ xW S ¬xAF ,¬xBF ⇒ ¬xW S

xBF ⇒ xW S
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Moreover, the situation suggests the world σ ∶= {xAF ,¬xBF , xW S}, thus the following
causal rules are active.

xAF ⇒ xAF

xAF ⇒ xW S

xAF ⇒ ¬xBF

From xAF ⇒ xW S and true /⇒ xW S we obtain xAF is a cause of xW S . Moreover, we
cannot derive that xBF causes xW S .

In summary, the literal xAF is a cause of xW S . Moreover, this result as well as the
formalisation can be found in [Boc18a].

4.2.5 Double Preemption
Benchmark 3.3.5 is an instance of “Double Preemption”, which refers to the scenario,
where a process that would have prevented another process, was prevented by an entirely
different process itself. For a detailed discussion on this topic see Section 3.3.6.

This benchmark describes the following scenario.

Alice intends to fire a bullet at a window (AI). Bob intends to prevent Alice
from hitting the window (BI). Carol intends to prevent Bob from stopping
Alice (CI). Bob tries to stop Alice (BSA). Bob is stopped by Carol (CSB).
Alice fires a bullet (AF ), hits the window (AH) and shatters it (WS). The
window shatters (WS).

We want to identify the cause of WS. According to [Hal16a, p. 35], AI, AF , CI, CSB
and ¬BSA should be considered causes.

The modified Halpern and Pearl Definition

We define the binary causal model Δ containing the equations

xCSA ∶= xCI

xBSA ∶= xBI ∧ ¬xCSB

xAF ∶= xAI ∧ ¬xBSA

xW S ∶= xAF

Moreover, the story induced the context σ ∶= {xAI ↦ true, xBI ↦ true, xCI ↦ true}.
First, xAI is a cause of xW S , because we simply need to intervene such that xAI is false
and without freezing any other value we obtain (I, σ) ⊧ [¬xAI]¬xW S . The same holds
for xAF . Second, xBI is not a cause of xW S , because we cannot intervene such that xCSB

does not hold, thus regardless of the value of xBI the value of xBSA will remain the same.
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Therefore, no form of intervention on xBI can influence xCSB. By contrast, ¬xBSA is a
cause of xW S , because if we intervene on xBSA by setting it to true, we observe that xAF

and subsequently xW S will evaluate to false. Third, xCI is a cause of xW S . To see this
we simply intervene such that ¬xCI holds. After this intervention xBSA is now satisfied,
which leads to ¬xAF and thus directly to ¬xW S , i.e. (I, σ) ⊧ [¬xCI]¬xW S . A similar
argument allows us to claim that xCSB is a cause as well.

In summary, the literals xAI , xAF , xCI , xCSB and ¬xBSA and xAH are considered causes
of xW S . This formalisation differs from the one found in [Hal16a] in some immaterial
aspects. Hence, most of the results are taken from the literature.

A principled approach to actual causality

We define the binary causal model Δ containing the equations

xCSA ∶= xCI

xBSA ∶= xBI ∧ ¬xCSB

xAF ∶= xAI ∧ ¬xBSA

xW S ∶= xAF

Moreover, we define the context to be σ ∶= {xAI ↦ true, xBI ↦ true, xCI ↦ true} and
to keep things simple we define the timing to be the constant function 1.

First, xAF is a cause of xW S , i.e. any sufficient set for xW S must contain xAF , now given
that both hold in our model and that the timing is constant it follows that xAF is a
producer of xW S . By contrast, ¬xAF cannot be such a producer, as xW S does not hold
in the modified model.

Second, xAI is a cause of xW S . To establish this we observe that the set {xAI ,¬xBSA} is
sufficient for xAF , while {¬xBSA} is not. Moreover, we know that ¬xBSA ∧ xAI holds, as
xCI implies xCSA which blocks us from inferring xBSA. Hence, we have established xAF

to be an actual contributing cause, which given a constant timing establishes production.
Moreover, it is easy to see that xAF produces xW S . This allows us to claim causal
behaviour, as ¬xAI cannot be an actual contributing cause of xAF in (Δ¬xAI

, σ, τ¬xAI
)

because xAF cannot be inferred in this model.

Third, ¬xBSA is a cause of xW S . This follows a similar argument as xAI . That is,{xAI ,¬xBSA} is a sufficient set, while {xAI} is not. Now given that both ¬xBSA and
xAF hold in the model and that the timing is constant we obtain that ¬xBSA produces
xAF which then produces xW S . By contrast, xBSA cannot produce xAF .

Fourth, xBI is a not cause of xW S . This follows from the observation that the sequence
of direct producers for xW S requires xBSA to hold, which as already established cannot
be derived. Hence, the condition (Δ, σ, τ) ⊧ xBI ∧ xBSA is not satisfied.

Fifth, xCSA is a cause of xW S , because the set {xCSA} is sufficient for ¬xBSA, i.e. xCSA

implies ¬(xBI ∧ ¬xCSB). Moreover, given a constant timing and the fact that the empty
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set is insufficient, we can claim that xCSA produces ¬xBSA. Following the chain of
production results in xCSA produces xW S . As for the negative case. If we intervene on
xCSA by setting it to false, the resulting model will satisfy xBSA and thus xW S cannot
hold.

Lastly, xCI is a cause of xW S . The positive case is easy to see, while for the negative it
suffices to notice that xCSA does not hold in the modified model.

In summary, the literals xAI , xAF , xCI , xCSB and ¬xBSA and xAH are considered causes
of xW S . A more concise version of this benchmark, as well as the respective results, can
be found in [BV18].

Possible Causal Process Semantic

We define the following causal theory

ϕ1 ∶= xCSA ← xCI ∣∣
ϕ2 ∶= xBSA ← xBI ∣∣ ¬xCSB

ϕ3 ∶= xAF ← xAI ∣∣ ¬xBSA

ϕ4 ∶= xW S ← xAF ∣∣
Moreover, the situation suggests the world σ ∶= {xAI , xBI , xCI , xCSA,¬xBSA, xAF , xW S}.
Now notice that ϕ1, ϕ3 and ϕ4 are applicable, active and satisfied. By contrast, ϕ3 is a
failed causal mechanism. Given this we can draw the causal process I

xCI xBI xAI

xCSB ¬xBSA xAF xW S

ϕ1 ϕ3

ϕ3 ϕ4¬ϕ2

Notice that the edge (xBSA, xAF ) is an enabling edge. Hence, only xAI and xAF are
actual P -causes of xW S .

In summary, only the literals xAI and xAF are considered causes of xW S . A more concise
version formalisation of this benchmark, as well as the respective results can be found in
[DBV18].
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Causal Inference

We define the following clausal causal theory

xAI ⇒ xAI ¬xAI ⇒ ¬xAI

xBI ⇒ xBI ¬xBI ⇒ ¬xBI

xCI ⇒ xCI ¬xCI ⇒ ¬xCI

xCI ⇒ xCSB ¬xCI ⇒ ¬xCSA

xBI ,¬xCSA ⇒ xBSA ¬xBI ⇒ ¬xBSA

xCSB ⇒ ¬xBSA

xAI ,¬xBSA ⇒ xAF ¬xAI ⇒ ¬xAF

xBSA ⇒ ¬xAF

xAF ⇒ xW S ¬xAF ⇒ ¬xW S

Moreover, the situation suggests the world σ ∶= {xAI , xBI , xCI , xCSB,¬xBSA, xAF , xW S},
thus the following causal rules are active.

xAI ⇒ xAI

xBI ⇒ xBI

xCI ⇒ xCI

xCI ⇒ xCSB

xAI ,¬xBSA ⇒ xAF

xAF ⇒ xW S

xCSB ⇒ ¬xBSA

First, xAF is a cause of xW S because of xAF ⇒ xW S and true /⇒ xW S . Moreover, by
transitivity we obtain xAI ,¬xBSA ⇒ xW S and given that ¬xBSA¬ ⇒ xAF it follows that
xAI is a cause as well. Similarly, we have ¬xBSA is a cause of xW S . Second, xCSB causes
xW S by transitivity, because of xCSB ⇒ ¬xBSA but true /⇒ ¬xBSA. From this it is easy
to see that xCI causes xW S . By contrast, xBI is not contained in our sub-theory. Hence,
we can not derive xBI causes xW S .

In summary, the literals xAI , xAF , xCI , xCSB and ¬xBSA and xAH are considered causes
of xW S . The formalisation is obtained by translating the causal model introduced above
using the algorithm in [Boc18a]. Moreover, we have not found a suitable formalisation of
this benchmark in the literature.

4.2.6 Bogus Preemption
Benchmark 3.3.6 is an instance of “Bogus Preemption”, which refers to the scenario,
where when an action is taken to interrupt an inactive process. For a detailed discussion
on this topic see Section 3.3.7.

We consider the extended version of Bogus Preemption described in Benchmark 3.3.6, i.e.
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Alice intents to put lethal poison into Carol’s water. However, Alice does
not put lethal poison into Carol’s water (¬AP ). Bob puts an antidote into
Carol’s water (BA). The water is lethal (L), if the poison is added without
the addition of an antidote If Carol would consume the lethal water she would
die (CD). Carol consumes her water (CC). Carol does not die (¬CD).

We want to identify the cause of ¬CD. Intuition is again somewhat murky. However, it
seems agreed upon that BA is not the cause of ¬CD. The uncertainty resides thus with¬AP and ¬L. Here we assume that neither of those should be considered a cause.

The modified Halpern and Pearl Definition

We define the binary causal model containing the equations

xL ∶= xAP ∧ ¬xBA

xCD ∶= xCC ∧ xL

with the context σ ∶= {xAP ↦ false, xBA ↦ true, xCC ↦ true}.
We can observe that ¬xAP cannot be the cause of ¬xCD, because xBA holds thus ¬xL is
fixed regardless of what variable we freeze and what intervention we perform on xAP .
Similarly, because ¬xAP holds, the same is true for xBA. Moreover, because xL does not
hold, any form of intervention on xCC cannot make xCD true. However, if we intervene
on the value of the variable xL, setting it to true, we obtain xCD. Hence, ¬xL can be
considered a cause of xCD. Lastly, notice that the equation xL ∶= xAP ∧ ¬xBA represents
in conjunction with the given context a case of Symmetric Overdetermination. That
is, if we consider the conjunct ¬xAP ∧ xBA, then flipping the variables in question such
that xAP maps to true and xBA maps to false we obtain that xL and xCD hold, i.e.(I, σ) ⊧ [xAP ,¬xBA]xCS . Moreover, with AC1 being clearly satisfied and with AC3
checked above, we obtain that the conjunct is in fact a cause.

In summary, both the literal ¬xL and the formula ¬xAP ∧ xBA are considered causes of
xCD. Moreover, the formalisation and the results can be found in [Hal15a].

A principled approach to actual causality

We define the binary causal model Δ containing the equations

xL ∶= xAP ∧ ¬xBA

xCD ∶= xCC ∧ xL
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with the context σ ∶= {xAP ↦ false, xBA ↦ true, xCC ↦ true} and the timing such that
xBA comes after xAP

τ(¬xAP ) ∶ = 1
τ(¬xL) ∶ = 1

τ(¬xCD) ∶ = 1
τ(xBA) ∶ = 3
τ(xCC) ∶ = 4

given the satisfied literals under the model (Δ, σ). This timing is valid, particularly of
note is the fact that τ(¬xL) = 1, because the last chance at which xL could have been
satisfied was at time 1. Similarly, ¬xAP is sufficient for ¬xCD, thus it happens exactly at
that moment when the water is no longer lethal. That means it is determined that Carol
will live before she drinks the water.

Clearly, ¬xAP does produce ¬xL, because with ¬xAP → ¬(xAP ∧ ¬xBA) the set {¬xAP }
is sufficient. Moreover, ¬xL does produce ¬xCD, because with ¬xL → ¬(xCC ∧ xL) the
set {¬xL} is sufficient. Moreover, xAP does not produce ¬xN in (ΔxAP

, σ, τxAP
) because

xAP does not imply ¬xN . Hence, any set sufficient for ¬xN remains sufficient once xAP

is removed. Therefore, ¬xAP is a cause of ¬xCD. Furthermore, ¬xL is a cause of ¬xCD,
as no sufficient set of ¬xCD can contain xL.

Looking at xBA we can observe that given τ , xBA cannot be a producer of ¬xN . Therefore,
it cannot be a cause of ¬xCD.

Notice that if the timing would have been reversed xBA and not ¬xAP would have been
the cause. Moreover, if both ¬xAP and xBA would have occurred simultaneously both
would have been considered causes [BV18].

In summary, both literals ¬xAP and ¬xAP are considered causes of xCD. Moreover, the
formalisation and the results can be found in [BV18].

Possible Causal Process Semantic

We define the following causal theory

ϕ1 ∶= xL ← xAP ∣∣ ¬xBA

ϕ2 ∶= xCD ← xCC , xL ∣∣
Moreover, the situation suggests the world σ ∶= {¬xAP , xBA,¬xL, xCC ,¬xCD}. Now
notice that ϕ1 and ϕ2 are blocked. Given this we can draw the causal process I
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¬xAP

xBA

¬xL

xCC

¬xCD

¬ϕ1

¬ϕ1 ¬ϕ2

The literals ¬xAP and ¬xL are both actual P -causes of ¬xCD, due to both (¬xAP ,¬xL)
and (¬xL,¬xCD) being non-trigger edges. By contrast, xBA is not an actual P -cause of¬xCD, due to (xBA,¬xL) being a failure edge of a non-active causal mechanism.

In summary, both literals ¬xAP and ¬xAP are considered causes of xCD. A more concise
formalisation of this benchmark can be found in [DBV18]. Since the definitions differ
slightly we derived the results independently.

Causal Inference

We define the following clausal causal theory

xAP ⇒ xAP ¬xAP ⇒ ¬xAP

xBA ⇒ xBA ¬xBA ⇒ ¬xBA

xCC ⇒ xCC ¬xCC ⇒ ¬xCC

xAP ,¬xBA ⇒ xL ¬xAP ⇒ ¬xL

xBA ⇒ ¬xL

xCC , xL ⇒ xCD ¬xCC ⇒ ¬xCD¬xL ⇒ ¬xCD

Moreover, the situation suggests the world σ ∶= {¬xAP , xBA,¬xL, xCC ,¬xCD}, thus the
following causal rules are active.

xAP ⇒ xAP

xBA ⇒ xBA

xCC ⇒ xCC¬xAP ⇒ ¬xL

xBA ⇒ ¬xL¬xL ⇒ ¬xCD
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Since we are able to derive ¬xAP ⇒ ¬xCD and xBA ⇒ ¬xCD using ¬xL ⇒ ¬xCD while
at the same time observing that true /⇒ xCD, the literals ¬xAP , xBA and ¬xL are
considered causes.

This arises due to the symmetry that emerged from translating the causal model. A
slight modification, i.e.

xAP ,¬xBA ⇒ xL ¬xAP ⇒ ¬xL

xCC , xL ⇒ xCD ¬xCC ⇒ ¬xCD¬xL ⇒ ¬xCD

Results in

¬xAP ⇒ ¬xL¬xL ⇒ ¬xCD

which means that only ¬xAP and ¬xL are causes of xCD.

In summary, the literals ¬xL , ¬xAP and xBA are considered causes of xCD. A more
concise formalisation of this benchmark can be found in [Boc18a]. Hence, the result in
our expanded version had to be derived independently.

4.2.7 Short Circuit

Benchmark 3.3.7 is an instance of “Short Circuit”, which refers to the scenario, where
an action is taken to prevent an inactive process, however, this triggers the process in
the first place, which then has no effect because the original action prevents it from
terminating. For a detailed discussion on this topic see Section 3.3.8.

This benchmark describes the following scenario.

Carol is alive (CA). Alice puts a harmless antidote in Carol’s water (AA).
Adding antidote to the water, protects it against poison (WS - “water save”).
If Alice puts the antidote into Carol’s water, Bob will poison the water (BP )
Adding poison to an unprotected water makes it toxic (WT ). If Carol would
drink toxic water she would die (i.e. inhibiting CS). Carol consumes her
water and survives (CS).

Notice that the variable CA was only added to this benchmark, to ensure that CS is
satisfied by default in the neuron diagram accompanying the example. Hence, it will
be omitted. We want to identify the cause of CS. Here intuition dictates that either
no event caused CS or possible ¬WT and WS caused CS. However, as mentioned in
Section 3.3.8, neither AA nor BP should be considered a cause.
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The modified Halpern and Pearl Definition

We define the binary causal model containing the structural equations

xW S ∶= xAA

xBP ∶= xAA

xW T ∶= ¬xW S ∧ xBP

xCS ∶= ¬xW T

with the context being σ ∶= {xAA ↦ true}.
First, ¬xW T is a cause of xCS in part because if we flip the value of xW T to true, we
obtain ¬xCS . Second, xW S is a cause of xCS as well. That is, xW S and xCS both hold
in the given model, the model obtained by flipping the value of xW S results in ¬xCS and
xW S satisfies the minimality criteria. Third, xBP is not a cause of xCS . This is because
intervening on xBP does not impact the value of xW S and thus xW T remains to be false.
Fourth, xAA is a cause of xCS , because if we intervene on xAA and fix xBP we obtain
that xW T evaluates to true, thus xCS will evaluated to false.

In summary, the literals xAA, xW S and ¬xW T are considered causes of xCS . Although
the benchmark is discussed in [HH15], we chose to adhere to the formalisation presented
in [Bau13]. Hence, the results had to be derived independently.

A principled approach to actual causality

We define the binary causal model containing the structural equations

xW S ∶= xAA

xBP ∶= xAA

xW T ∶= ¬xW S ∧ xBP

xCS ∶= ¬xW T

with the context being σ ∶= {xAA ↦ true}. As for the timing, we simply choose the
constant timing 1.

First, we can observe that ¬xW T is a cause on xCS . That is, the set {¬xW T } is sufficient,
the timing matches due to the timing function being constant, and both hold under the
current model. By contrast, xW T and xCS cannot be both true, thus we fail to establish
production in the negative case and demonstrate causation in the process.

Second, xW S is a cause of xCS . To establish this we demonstrate that xW S produces¬xW T . First the set containing xW S is sufficient because xW S → ¬(¬xW S ∧ xBP ) while
the empty set does not. Moreover, there is no restriction w.r.t. to the timing function
and xW S and ¬xW T both hold in the model. Hence, we obtain xW S causes xCS . By
contrast, ¬xW S cannot produce ¬xW T , because if we intervene in the model we obtain
xW T due to (I¬xW S

, σ, τ¬xW S
) ⊧ xBP . Hence, ¬xW S cannot be an actual contributing
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cause of ¬xW T . With a similar argument, we can establish that xW S is not an actual
contributing cause for xCS .

Third, xBP is not a cause of xCS . This arises due to the fact that it is not a producer of¬xW T , as no sufficient set for ¬xW T can contain xBP . Hence, xBP cannot be a producer
of xCS and thus no cause as well.

Fourth, xAA. Clearly, xAA is a producer of xW S and therefore a producer of xCS . By
contrast, if we intervene to obtain the model (I¬xAA

, σ, τ¬xAA
) then we can observe that

the set {xAA} is sufficient for ¬xBP and by extending the constant function τ¬xAA
to

all literals, we obtain that ¬xAA produces ¬xBP . In an analogue to xW S in the original
model, ¬xBP subsequently produces ¬xW T , which as we know produces xCS . Hence, we
can conclude that ¬xAA produces xCS and therefore fails to be a cause of xCS .

In summary, nothing caused xCS . Moreover, a slightly different formalisation and the
respective results can be found [BV18].

Possible Causal Process Semantic

We define the following causal theory

ϕ1 ∶= xW S ← xAA ∣∣
ϕ2 ∶= xBP ← xAA ∣∣
ϕ3 ∶= xW T ← xBP ∣∣ ¬xW S

ϕ4 ∶= ¬xCS ← xW T ∣∣
Moreover, the world σ ∶= {xAA, xW S , xBP ,¬xW T , xCS} is suggested. Observe that both
ϕ1, ϕ2 are active, applicable and satisfied, that ϕ3 is both active and failed because of
xW S , and that ϕ4 is simply blocked due to ¬xW T .

Given this we can draw the causal process I

xAA

xBP

xW S

¬xW T xCS

The edges (xAA, xW S) and (xAA, xBP ) are both trigger edges. The edge (xW S ,¬xW T )
is a failure edge and the edge (¬xW T , xCS) is a non-trigger edge. Now given that ϕ3
is active we can find the path from xAA over xW S to xCS that consists only of trigger,
non-trigger and failure edges of active causal mechanism. Hence, we can conclude that
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xAA, xW S , ¬xW T all are causes of xCS . By contrast, there does not exists a path from
xBP to xW S and thus xBP cannot be a cause.

In summary, both literals xAA, xW S and ¬xW T are considered causes of xCD. No
corresponding formalisation was found. Hence, both the model and the results were
produced independently of the literature.

Causal Inference

We define the following clausal causal theory

xAA ⇒ xAA ¬xAA ⇒ ¬xAA

xAA ⇒ xW S ¬xAA ⇒ ¬xW S

xAA ⇒ xBP ¬xAA ⇒ ¬xBP¬xW S , xBP ⇒ xW T xW S ⇒ ¬xW T¬xBP ⇒ ¬xW T¬xW T ⇒ xCS xW T ⇒ ¬xCS

Moreover, the situation suggests the world σ ∶= {xAA, xW S , xBP ,¬xW T , xCS}, thus the
following causal rules are active.

xAA ⇒ xAA

xAA ⇒ xW S

xAA ⇒ xBP

xW S ⇒ ¬xW T¬xW T ⇒ xCS

Given this sub-theory, we obtain that xAA, xW S , ¬xW T are all causes of xCS due to
transitivity. Moreover, we cannot infer that xBP is a cause of xCS .

In summary, both literals xAA, xW S and ¬xW T are considered causes of xCD. No
corresponding formalisation was found. Hence, both the model and the results were
produced independently of the literature.

4.2.8 Comparison
Here we briefly summarise the results obtained in the previous sections. To that end,
Table 4.1 provides a concise summary, by listing the causes obtained from applying the
definitions introduced in Section 4.1 to the considered benchmarks (see Section 3.3).

Among the results for Benchmark 3.3.1 the definition HP-15 is particularly interesting.
Indeed, considering that the other definition can only identify causes if they are encoded
as literals, HP-15 permits a more flexible notion of cause. That is, given the sketched
situation, HP-15 identified that due to the overdetermination we cannot isolate singular
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causes for the shattering of the window. Hence, rather than considering each AF and
BF as causes individually, it is their conjunct that ensures WS.

For the scenario sketched in Benchmark 3.3.2, both BV-CM and PCPS comply with
intuition, because both recognise that the choice of track is immaterial for the arrival of
the train. The definition BV-CM accomplishes this by demanding causes to be asymmetric
w.r.t. production. Meaning that for AF to be a cause, only AF and not ¬AF can produce
TD. The definition PCPS achieves this by distinguishing between two types of events:
triggering and enabling conditions. The flicking of the switch only enables the train
to travel on track A, i.e. the flicking of the switch only establishes the background
conditions, which given this definition cannot be causes. However, it may be unclear
what a triggering and what an enabling condition should be, as AF could be considered
as a triggering event as well. To remove this uncertainty we followed the model structure
presented in [DBV19]. By contrast, HP-15 and BCI both declare the flicking of the
switch a cause. As discussed in Section 3.3.3, [HH11] suggests that the discrepancy
between intuition and the inference of his definition is a result of the implicit assumption
that one of the tracks could be blocked. Hence, he argues that a model that captures this
assumption may be better suited for this situation, e.g. such a model would contain the
equation TD ∶= (AF ∧ ¬BA) ∨ (¬AF ∧ ¬BB), where BA and BB represent whether the
respective track is blocked or not. Given this reformulation, HP-15 complies with the
stated intuition. However, notice that in this reformulation AF is part of the equation
for TD. Hence, one reason why AF suddenly ceases to be a cause in the modified model
is that we eliminate the hypothetical scenarios where the track travels on no or on both
tracks at the same time. That is, adding TA and TB as auxiliary variables creates
possible worlds which are immediately discounted by humans. Thereby, creating a rift
between intuition and formal inference. For example, if we select a causal model with the
structural equations of TD ∶= AF ∨ ¬AF then clearly no intervention on AF can result
in the train not arriving. In this simplistic model, both HP-15 and BCI do not recognise
TD as cause.

The results for Benchmark 3.3.3 are uniform in the sense that all definitions agree with
the intuitively correct answer. Particularly of note is the BV-CM. Here the inclusion of
a timing function allows for an elegant encoding of the problem. That is, the causal
model can have the same structure as in the Symmetric Overdetermination scenario.
However, rather than both events acting at the same time, the selected timing ensures
that one event occurs after the effect, breaking the overdetermination. As for HP-15,
BCI and PCPS this behaviour is enforced by introducing auxiliary variables that mimic
the progression of time. However, given the observation that adding auxiliary variables
can lead to undesired inferences, as in the Switch scenario of Benchmark 3.3.2, this may
not be the ideal choice of action. PCPS differs only by declaring AH to be an enabling
condition of BH, thus ensuring that the process set in motion by BF can only terminate
if the process set in motion by AF fails.

On the Benchmark 3.3.4 only the definition BV-CM disagrees with the supposedly correct
answer. That is, rather than declaring AF to be the cause of WS, the window shatters
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without any cause. While initially counter-intuitive this choice was deliberate, as in
their view Early Preemption is closely related to Switch. That is, irrespective of the
value of AF the window will always shatter. Hence, if we would like to strengthen this
resemblance, we could add an auxiliary variable between AF and WS, which given the
results obtained for Switch would be considered a cause of WS. By contrast, all of the
definitions agree that BF cannot be a cause of WS.

As for Benchmark 3.3.5 only the definition PCPS fails to capture the stated intuition.
This is primarily due to the choice of modelling BSA as an enabling condition for AF .
This eliminates the causal influence of CSB and CI. The most important result to
highlight for this benchmark is that no definition declared BI to be a cause of WS.

For Benchmark 3.3.6 the results are slightly more diverse. Most importantly, all definitions
declare the non-lethality of the water to be a cause of Carol’s survival. Although, not
entirely in line with intuition, void of any form of normality assumptions declaring ¬L to
be a cause on ¬CD seems to be a reasonable inference. However, as soon as we recognise
that adding the assumption “¬L is the normal state of the world”, this inference becomes
less clear. The definition HP-15 adds to this by declaring the conjunct ¬AP ∧BA to be
a cause. However, it does not deem either of the individual literals as a cause, because
to the part of the causal model that establishes lethality, is similar to an instance of
Symmetric Overdetermination. Moreover, the similarity to Symmetric Overdetermination
also explains the behaviour of BCI, which in addition to ¬AP also declares BA as a cause
of ¬CD. The scenario slightly shifts when considering BV-CM, which declares ¬AP to be
a cause. That is, while from a causal model perspective we are presented with a case of
Symmetric Overdetermination, the temporal component in the story indicates that ¬AP
comes before BA. Hence, we are in fact faced with a case of Late Preemption, which can
be captured using the timing function without modifying the underlying causal model.
By contrast, PCPS behaves quite differently from Symmetric Overdetermination. In
fact, the behaviour resembles a complete inverse of the situation. That is, in Symmetric
Overdetermination all paths are trigger paths indicating that all causal mechanisms
terminated successfully. Whereas in this case all paths are either failure or non-trigger
paths, which indicates that all causal mechanisms either failed or were not initiated in
the first place.

On the Benchmark 3.3.7 all definitions agree with the non-controversial intuition that
BP is not a cause of CS. However, all definitions except BV-CM declare AA a cause of
CS as well. However, given the fact that AA essentially generates its own relevance, such
an inference seems counter-intuitive. One reason for this particular difference between
the formalisms is that the part of the scenario that determines the toxicity of the water
resembles to some extent a Switch scenario. Hence, it is no surprise that the definitions
HP-15 and BCI which declared the flicking of the switch to be a cause of the train arrival
in Benchmark 3.3.2, also declare AA to be a cause of CS. A slightly different picture
arises in the case of PCPS, because of a discrepancy in behaviour between this and the
Switch scenario. The reason behind this is that in this case the switch event, i.e. AA
actually takes on the role of a triggering condition. That is adding the antidote triggers
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the water to be save against poison and triggers Bob to add poison to the water. By
contrast, if we would rephrase this to “adding the antidote enables the water to be save
against poison” and “adding the antidote enables Bob to add poison to the water”, then
AA would seize to be a cause. As already mentioned the definition BV-CM manages to
avoid this inference by requiring that causes are asymmetric and since ¬AA also produces
CS it denies AA the status of cause.

To summarise, the Benchmark 3.3.1 nicely highlights a major advantage of HP-15,
namely that its causal attribution extends beyond mere literals. Emphasising, that both
AF and BF individually are only part of the cause of the WS. Not because they are
not able to produce WS on their own, but because both events have to fail in order to
prevent the window from shattering. One major limitation of the sketched comparison is
the fact that we have limited ourselves to binary scenarios only. That is, the selected
benchmarks could all be encoded using deterministic binary variables. Hence, one major
advantage of HP-15 remained hidden. Namely, it is defined to cope with multi-valued
variable values and is therefore able to capture scenarios that go beyond the capabilities
of the other definitions. Especially the ability to deal with probabilities in a rudimentary
manner seems to be a desirable feature. From our point of view the most troublesome
behaviour of this definitions occurs in the case of Switch (Benchmark 3.3.2). That is, we
think that the flicking of the switch is incorrectly classified as cause. In particular, the
definition is not robust to the addition of the auxiliary variables xT A and xT B, because
in the reduced model containing only the structural equation xT A ∶= xAF ∨ ¬xAF the
“correct” inference is made. This is due to the fact that in the extended model we can
produce a hypothetical scenario that results in the train not arriving. The feature missing
here is a method of pruning “impossible” hypothetical scenarios, which would make the
definition more robust to the addition of auxiliary variables.

As seen in the Benchmark 3.3.2, the definition BV-CM captures a particularly desirable
property of causation in an elegant fashion, namely asymmetry. That is, because both
the flicking of the switch and the omission of flicking the switch results in the train
arriving. Hence, the action taken is immaterial for the outcome and should therefore not
be considered a cause. This is precisely the reason why BV-CM in unable to identify any
cause for the shattering of the window in the Early Preemption scenario. Put bluntly, in
such cases the outcome is already predetermined and thus given the required asymmetry
no event can actually cause it. Moreover, we can observe the benefits of BV-CM’s timing
function in two separate examples, i.e. the Benchmark 3.3.3 and the Benchmark 3.3.4.
That is, while both scenarios have proven to be challenging for past definitions, BV-CM
demonstrates that this challenge can be circumvented by simply extending causal models
by a temporal dimension that goes beyond the addition of auxiliary variables. This allows
not only for more elegant and robust modelling of such situations, but provides additional
insights. For example, as seen in Benchmark 3.3.6, we could observe that a valid timing
for the discussed scenario requires that Carol is guaranteed to survive at the very moment
at which Alice refrains from adding poison to the water. Hence, demonstrating in a
painfully explicit manner that adding the antidote or drinking the water is immaterial for
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the survival of Carol. Compared to HP-15, BV-CM has the disadvantage that causes are
restricted to literals. Hence, in the context {xAF ↦ t, xBF ↦ t}we can not distinguish
between the causal model containing the structural equation xW S ∶= xAF ∨ xBF and the
one containing the equation xW S ∶= xAF ∧ xBF on the declared causes alone, as in both
cases xAF and xBF are considered causes.

The chosen examples were not ideal to highlight the unique strength of PCPS, namely
the distinction between enabling and trigger conditions. To demonstrate the utility of
this feature consider the following scenario.

A forest fire (FF ) was ignited by a spark (S) due to the presence of dry grass
(D) and oxygen (O). What caused the forest fire?

By modelling this situation using the causal mechanism xF F ← xS ∣∣ xD, xO, we can
satisfy the intuition that the spark was the cause of FF , while both D and O were merely
background conditions. By contrast, with HP-15 the straightforward causal model with
the structural equation xF F ∶= xS ∧ xD ∧ xO we would declare all literals individually
as cause of xF F . A similar picture arises for BV-CM and BCI as well. However, a
deficit of PCPS is the fact that it requires that variables can change their value only
once. For example, we are not able to model a light switch, i.e. flicking the switch once
turns the light on and flicking it again turns the light off. Hence, it is missing some
mechanism that allows for a more liberal definition of a causal theory [DBV18]. Moreover,
as with BV-CM, the restriction to literals as causes makes the disjunctive scenario, i.e.{xW S ← xAF , xW S ← xBF }, and the conjunctive scenario, i.e. {xW S ← xAF , xBF },
indistinguishable if both xAF and xBF hold.

Lastly, the definition BCI performs similar to HP-15, on this particular set of examples,
which seems to be intentional, as BCI is an attempt to provide a regularity based
perspective to the recent advances made by the counterfactual tradition of causality.
This, unfortunately, makes it difficult to pinpoint scenarios where BCI provides a unique
perspective to causality. However, what sets BCI apart it allows for causal inference using
a proper logical foundation [Boc18a]. Due to its similarity with HP-15, the criticism
about the Switch scenario in Benchmark 3.3.2 applies here as well. That is, the literal
xAF is considered a cause, even if the outcome is predetermined. Moreover, in the
simplified version of this scenario, i.e. the one without auxiliary variables, xAF would
still be the cause of xT A. To be precise, due to the fact that disjuncts are not allowed the
causal theory in this scenario would be {xAF ⇒ xT A,¬xAF ⇒ xT A} and therefore just{xAF ⇒ xT A} in the case where xAF holds. Furthermore, similar to BV-CM and PCPS,
BCI can not distinguish between the conjunctive and disjunctive scenario.

Due to the choice of benchmarks there are some severe limitations with the above
comparison. That is, the presented benchmarks can be captured on a propositional
level and ask only for binary causal attribution, i.e. something is a cause or not. Hence,
the investigations miss that none of the discussed formalism can capture first-order
statements and that apart from HP-15 none of them is capable of expressing causality in
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a quantitative fashion. Both avenues are explored in the causality literature. For example,
[BS18] uses situation calculus to move towards a first-order definition of token causality
and [Hal16a] discusses the connection between causes and degrees of responsibility using
HP-15. However, overall those two features are under-represented in the discussion.
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CHAPTER 5
Conclusion

This thesis provided a systematic review of the causality literature on three different levels
of granularity. In Chapter 2 we studied the structure of a large subsection of the causality
literature to identify important authors, publications and research communities. Building
on Chapter 2, Chapter 3 surveys the set of important publications to identify important
formal languages, definitions and benchmarks used in the causality literature. Chapter 4
further narrows the scope, by testing the capability of some important definitions from
Chapter 3 against some of the introduced benchmarks.
To identify important publications, authors and research communities working in the field
of token causality, we surveyed approximately 5000 publications. That is, we started by
collecting all publications in “Journal Knowledge-Bases Systems”, the “Journal Artificial
Intelligence”, the “Journal Artificial Intelligence and Law” and “International Joint
Conferences on Artificial Intelligence Organization” that were published between 01.2017
and 3.2020. Using a simple key-word search we reduced 4223 unique publications, to a
manageable set of 37 publications. After employing several forward-snowball, backward-
snowball and filter steps we obtained a total of 872 publications. Those publications were
subject to closer inspection and further filtering which provided us with 294 relevant
publications, which were further reduced to 107 publications by considering only those
that had been published in the past decade.
Using the collected publication we constructed several graphs. The two most important
ones were the publication graph Gp and the merged graph Gm. The former graph, was
obtained by extracting the citation relation from the bibliographies of each of the 107
papers, this allowed us to employ centrality measures to identify important publications.
Using the rankings induced by those centrality measures we were able to identify 36
important publications which were subjected to further study in subsequent chapters.
Notable mentions are [Wes15], [BS17], [HH11], [GDG+10] and [HH15], all of which are
ranked highly across all measures. The fact that all those publications use causal models
as their preferred method of encoding causal relations hints at the dominance of this
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framework throughout the causality literature. A claim that is further supported by
the observations made in Chapter 3. The graph Gm, was obtained by both connecting
the authors based on the citation relation of Gp and by connecting them based on the
co-authorship relation. Here, the most important findings were that the authors Lifschitz,
Icard, Bochman, Eberhardt, Hitchcock, Gerstenberg, Lagnado and Halpern consistently
score high across each ranking. Furthermore, we were able to observe that there have
been collaborations between Bochman and Lifschitz; Halpern and Hitchcock; Gerstenberg
and Icard. The first two were particularly important for this thesis. That is, both
Lifschitz and Bochman focus on variants of the causal theory put forward in [MT+97]
and tend to approach causality from a regularity theoretic point of view. By contrast,
Halpern and Hitchcock strongly adhere to the structural equation framework. Their
investigations into causality, while emerging from the counterfactual tradition, recently
incorporate some regularity theoretic tools, e.g. extending causal models with normality
rankings. Some auxiliary investigations revealed that with a total of 114 publications
the decade between 2000 and 2010 was the most productive one. However, as we mostly
neglected the part of the literature concerned machine learning, it seems reasonable
to assume that there is actually an increase in publications discussing causality over
time. However, this hypothesis was not tested. Nevertheless, notable publications of this
decade are “Nonmonotonic Causal Theories” [GLL+04], “Causes and Norms” [HK09],
“Prevention, Preemption, and the Principle of Sufficient Reason” [Hit07a], “Two Concepts
of Causation” [Hal04] and “Structural Equations and Causation” [Hal07].

Analysing these 36 important publications, we could identify 18 unique formal languages
used for encoding causal relationships, 32 unique token causality definitions and more
than 20 benchmarks used for testing said definitions. Moreover, we tracked how often
each of those constructs were referenced within the given set of publications in order to
gauge their popularity.

By far the most discussed language family is the one building on causal models, with the
CP-Logic (causal and probabilistic Logic) family and the non-monotonic causal theory
tying for a distant second place. The causal model family contains the greatest amount
of languages, making it by far the most developed strain of formalisms. Introduced
by Pearl, it assumes that causal mechanisms governing the world can be described by
a set of random variables and a set of deterministic structural equations. This allows
one to condense all type-causal relations that may influence a variable into a single,
asymmetric equation. The CP-Logic family is closely related to logic programming.
Among others, it contains two rather distinct members, the first heavily emphasising
the use of probabilities in encoding causal relations while the second taking a more
process-orientated view by encoding causal relations as causal mechanisms that have
both triggering and enabling conditions. Non-monotonic causal theory simply extends an
ordinary propositional language with a causal relation, which expresses that a proposition
causes another proposition. This inference relation is a more restrictive variant of the
production inference relation, a defining feature of which is its failure to satisfy the
reflexivity postulate.
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Among the plethora of token causality definitions, by far the most discussed are the three
definitions put forward by Halpern (and Pearl), which naturally are defined in terms of
causal models. Moreover, given the fact that more than 12 additional definitions were
build on the causal model framework, it is quite apparent that the ideas of Halpern
and Pearl still influence the causality literature heavily. By contrast, although there
are various interesting definitions that utilise other languages, e.g. situation calculus,
non-monotonic causal theories, CP-Logic and others, their investigations rarely extend
beyond their publication of origin. However, it is possible to detect two trends among
the definitions. Firstly, the boundaries between the traditions start to blur. For example,
there are counterfactual definitions that are incorporating regularity theoretic ideas such
as normality into their definitions, e.g. [Hal08] and [Wes15]. Moreover, even the definition
from [Boc18a], which sees itself firmly rooted in the regularity theoretic tradition, has
some counterfactual flavours. Secondly, among the newer definitions there seems to be a
greater emphasis on time and processes. For example, [BV18] extends the causal model
framework using a timing function, [DBV19] models causal relationships as processes and
most importantly the significant number of new definitions are using situation calculus,
i.e. [BS18], [LBV19] and [KS20].

In Chapter 4 we highlighted the causal model based definition found in [BV18], the
CP-Logic based Possible Causal Process approach found in [DBV19] and the Non-
Monotonic Theory based approach found in [Boc18a], because they are the most recent
definitions from each of the three most popular language families. Moreover, we further
discussed the newest incarnation of the definitions put forward by Halpern, namely the
modified Halpern and Pearl definition introduced in [Hal15a]. However, given the many
definitions detected, this selection only provides a small glimpse into the techniques
used for formalising causality. For example, the definitions utilising situation calculus
could provide additional insight into causation, because as of now they belong to the few
definitions that actually tackled causality from a first-order perspective. Furthermore,
we could observe that most definitions are grounded in either the counterfactual or the
regularity theoretic tradition. However, there are some definitions that take ideas from
other philosophical traditions, e.g. the probabilistic interpretation of Halpern’s definition
put forward by [FG17].

The primary objective of token causality literature seems to be the development of
a definition that corresponds to the intuitive human understanding of causation. To
demonstrate or refute the claim that a definition satisfies the specified goal, the literature
accumulated a significant number of benchmarks, which represent edge cases that have
proven to be troublesome to capture. By far the most commonly used ones are: Symmetric
Overdetermination, which refers to the scenario where multiple processes, all of which
producing the same outcome, terminate at the same time; Switching, which refers to the
scenario where there exists an event that triggers one of two processes both of which have
the same outcome, thus making the event immaterial for the outcome of the scenario; Late
Preemption, which refers to the scenario where there are two causal processes running in
parallel, both would produce the same outcome, but one process terminates before the
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other does, thus bringing forth the outcome and rendering the second process irrelevant;
Early Preemption, which refers to the scenario where there are two causal processes, both
would produce the same outcome, but one process terminates before the other can even
start; Double Preemption, which refers to the scenario where a process that would have
prevented another process, was prevented by an entirely different process itself; Bogus
Preemption, which refers to the scenario where an action is taken to interrupt an inactive
process; Short Circuit, which refers to the scenario where action is taken to prevent an
inactive process, however, this in fact triggers the process in the first place, which then
has no effect because the original action prevents it from terminating.

Considering the listed benchmarks, there are two significant problems. The first is that
for some it might not be clear what the correct answer should be. The second is that it
is often not clear how to formalise the scenarios sketched in those benchmarks, which
is not ideal given that many of the presented definitions are highly sensitive to slight
changes in a model, e.g. adding a simple auxiliary variable may change the resulting
inferences drastically. Hence, debates surrounding the correct definition of causality, are
tainted by disagreements on the correct answers and even the correct formalisation, thus
prohibiting a clean comparison between various formalisms.

Nevertheless, those benchmarks are used in Chapter 4 to compare the four definitions.
While we were able to find several evaluations of those benchmarks in the literature, this
was not always the case. Hence we were sometimes required to formalise and evaluate
those benchmarks independently of the literature to properly compare the definitions.
While most definitions comply more or less with what humans would intuitively consider
causes, it is still possible to highlight some differences. The definition put forward by
Halpern, provides a relatively simple inference procedure that extends the notion of causes
to entire conjuncts of literals. By contrast, all the other definitions restrict themselves
to literals only. This results in an arguably more intuitive inference on the Symmetric
Overdetermination scenario. By contrast, it provides a less desirable result on the Switch
scenario, which in our opinion is best handled by the causal model based approach
developed by Beckers, which encodes the assumption that an event can only be a cause of
another event, if the absence of the event does not result in the same event. This approach
further differentiates itself from Halpern’s definition by explicitly including time in the
inference procedure, allowing for an elegant handling of the time-dependent scenarios,
e.g. Late Preemption or Early Preemption. A refreshingly new perspective on causation
is brought forth by Denecker, in the form of the Possible Causal Process Semantic. The
unique feature of this approach is the distinction between enabling and trigger conditions.
Although making modelling slightly more difficult, it elegantly addresses the issue of
background conditions and whether they should be considered causes or not. Lastly,
what sets Bochman’s definition apart is that it provides a proper logical foundation for
performing causal inference.

From our point of view, the two most interesting issues surrounding token causality
are time and normality. First, while type causal relationships can be atemporal, e.g.
temperature and altitude, establishing token causality always requires some form of
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temporal progression, i.e. a cause cannot occur before its effect. However, many formalisms
leave the progression of time more or less implicit. Additionally, paying more attention
to time would resolve the need for cyclic models, e.g. feedback loops could be unravelled
along the temporal axis. Second, normality or more generally additional context. The
idea of incorporating normality is a result of the observation that humans declare an
event to be a cause, if it is something that is out of the ordinary. For example, for a fire
we require oxygen and a spark. If we are on earth the spark would clearly be the cause
of the fire, because oxygen is assumed as a given. By contrast, if we would be in space,
then the assertion that both should be considered a cause becomes more reasonable. It is
postulated that appealing to normality may address such concerns. Another important
avenue that should be explored in greater detail, is the idea of soft causation. That is,
while some definitions recognise that not all causes contribute equally to the occurrence
of the effect, the literature is starved of investigations on how to quantify the extent to
which an event contributed to the occurrence of an event.

However, above all this it is hard to disagree with [GDG+10], and ask whether the
inductive “example first” approach is actually fruitful. Especially if we want to formalise
more complex scenarios, that are intertwined with an individual understanding of the
world. For example, if we want to identify what caused the bad grades of a student,
was it the teacher, was it the friend circle, the socio-economic status of the parents, the
race of the student, the fact that his dog died last year, and so on. In such complex
scenarios, it already seems impossible to formulate a sufficiently inclusive model of the
word to capture all those different factors. Moreover, if we want to assess the causes using
counterfactuals, we would actually require data covering all the hypothetical scenarios
such that we could precisely assess their influence on grades. Hence, even if we would
have a correct definition of what a token cause is, such form of inference becomes quickly
infeasible due to the immense amount of data required for establishing the connection
between the variables.

However, it is important to realise that this concern does not diminish the utility of
those definitions in more controlled settings, e.g. physical laws, game theory, computer
programs, and so on. In a similar fashion, this survey can conclude, that there does
not seem to exist a definition that perfectly captures token causality. Indeed, given the
vagueness of human intuition there may never be one definition that is beyond criticism,
however, the modern definitions of token causality seem to be sufficiently robust to
provide ample utility in a variety of settings.
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CHAPTER 6
Appendix

Figure 6.1: A line graph depicting the average in-degree, out-degree and overall degree of
the publications in Gp.
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